The Coherence Side of Rationality

Pamela Giustinelli and Stefano Rossi Discussed by Deborah Kim

March 31, 2023

I. Motivation & Summary

II. Discussion

Object of Study: Coherence of Forecasts

• Consider setting where a reasercher predicts a 1-period-ahead target vector $Z_{t+1} \in \mathbb{R}^k$.

• Let \hat{Z}_{t+1} denote our forecast vector.

Is
$$\hat{Z}_{t+1}$$
 a good forecast?

$$\begin{cases}
(i) Accuracy : \hat{Z}_{t+1} \text{ and } Z_{t+1} \text{ are close.} \\
(ii) Coherence : \hat{Z}_{t+1} \text{ is consistent with property of } Z_{t+1}.
\end{cases}$$

Intuitively, coherence means the connection between the elements within the forecast vector is plausible. The paper studies coherence of forecast in firm's production problem.

$$Z_{t+1} = (\underbrace{Y_{t+1}}_{\text{output}}, \underbrace{X_{1,t+1}}_{\text{capital}}, \underbrace{X_{2,t+1}}_{\text{labor}})' \text{ and } \hat{Z}_{t+1} = (\mathbb{E}_t[Y_{t+1}], \mathbb{E}_t[X_{1,t+1}], \mathbb{E}_t[X_{2,t+1}])'.$$

- ► Economic theory tells us $Z_{t+1} = (Y_{t+1}, X_{1,t+1}, X_{2,t+1})$ should satisfy the production function. E.g. $Y_{t+1} = X_{1,t+1}^a X_{2,t+1}^b$ for Cobb-Douglas function.
- ▶ The paper declares that \hat{Z}_{t+1} is coherent if it satisfies a "property" implied by the production function and formalizes the "property".

Why is coherence important?

The paper argues importance of coherence based on the following logic.

A firm has an incoherent forecast $\hat{Z}_{t+1} = (\mathbb{E}_t[Y_{t+1}], \mathbb{E}_t[X_{1,t+1}], \mathbb{E}_t[X_{2,t+1}])$ \Downarrow The firm could end up using sub-optimal combination of capital and labor. \Downarrow

The firm obtains lower profit.

What methods have been used to forecast Z_{t+1} ?

Rules of thumbs

- (R1) future growth = past growth for each element of Z_{t+1} .

$$\mathbb{E}_{t}\left[\frac{Y_{t+1}}{Y_{t}}\right] = \frac{Y_{t}}{Y_{t-1}}, \mathbb{E}_{t}\left[\frac{X_{1,t+1}}{X_{1,t}}\right] = \frac{X_{1,t}}{X_{1,t-1}}, \text{ and } \mathbb{E}_{t}\left[\frac{X_{2,t+1}}{X_{2,t}}\right] = \frac{X_{2,t}}{X_{2,t-1}}$$

- (R5) regress
$$X_{1,t} = \alpha + \beta Y_t + \gamma X_{2,t}$$
;
choose \hat{Z}_{t+1} s.t. $\mathbb{E}_t[X_{1,t+1}] = \hat{\alpha} + \hat{\beta}\mathbb{E}_t[Y_{t+1}] + \hat{\gamma}\mathbb{E}_t[X_{2,t+1}]$.

Whether they yield coherent forecasts has not been assessed.

Objectives

In terms of theory, the paper

- derives properties that coherent forecasts must satisfy;
- compares the rules of thumbs in terms of coherence;
- develops a statistical test to detect incoherence.

With data, the paper

- reports that incoherent forecasts are prevalent in survey;
- shows that level of incoherence is negatively correlated with corporate performance, evidence supporting the authors' conjecture

I. Motivation & Summary

II. Discussion

Strength: Practicality

The paper derives coherence constraints. If Cobb-Douglas,

$$\mathbb{E}_t \log [Y_{t+1}] = a \cdot \mathbb{E}_t \log [X_{1,t+1}] + b \cdot \mathbb{E}_t \log [X_{2,t+1}].$$

$$(1)$$

▶ The paper provides a guideline to evaluate coherence of a given forecast vector.

- If production is the Cobb-Douglas, and if a practitioner
 - 1. knows *a*, *b*, \Rightarrow plug-in
 - 2. doesn't know a, b, \Rightarrow use RoT5 estimate the parameters and plug-in
 - 3. doesn't know a, b, & faces noisy inputs, \Rightarrow compare to forecast generated by RoT1

Limit: How to Forecast?

- The paper is helpful when we are given with a forecast to assess, but is silent on "how to make a good forecast".
- Ultimately, to make a good forecast, we need to account for "accuracy".
- A natural way to achieve both is to maximize the accuracy under the coherence constraint. E.g.,

$$\min_{\hat{Z}_{t+1}} L(\hat{Z}_{t+1}; \{Z_i\}_{i=1}^t) \text{ s.t. } f(\hat{Z}_{t+1}) = 0$$

where *L* is some loss function, $\{Z_i\}_{i=1}^t$ is a set of realized data and *f* is coherence constraint.

Weakness: Simplified Statistical Analysis

- The statistical test can be implemented with one observation; it determines one forecast vector is incoherent.
- Known common production, Structure on price (AR1 with normal error)
 ⇒ Neither heterogeneous productions nor specification error
- 73% of incoherent forecasts reported. Rejection could be due to violation of assumptions.
- Modifying the goal, for example testing whether forecasts are incoherent "on average", may require less strict assumptions.

 \Rightarrow The paper may improve its credibility without too much change of the results.