Discussion of

Estimating Social Networks Models with Missing Links

Lewbel, Qu and Tang (2023)

Yong Cai
March 31, 2023

Outline

Summary

Discussion

Summary

Setting

- Peer effects regression:

$$
y=\lambda G y+X \beta+\varepsilon
$$

where G is adjacency matrix of the network

- Many results on identification and estimation when G is perfectly observed
- Less is known when G is unobserved or observed with error

Network Data Often Unobserved or Observed with Error

- Network data is high dimensional and thus costly to collect
- To limit data collection, surveyors may ask respondees to list X friends
- Respondees may not be able to recall all connections
- Relationships are intensities, hard to quantify and elicit

This Paper

Peer effects regression when network data is missing at random

1. Shows that augmentation bias arises
2. Provides 2SLS-based solution when multiple networks are observed

Augmentation Bias

- Let H be observed adj. matrix with p proportion of links randomly missing
- Using H as plug-in for G leads to augmentation bias:

$$
y=\left(\frac{\lambda}{1-p}\right) H y+X \beta+v \quad, \quad E[v \mid X, G]=0
$$

- In OLS: attenuation bias with mean zero white noise measurement error
- Missingness has negative mean
- Intuition: an individual is affected by 5 friends but we misattribute to 3

2SLS with Multiple Networks

- Gy is endogenous; use $G X$ or $G^{2} X$ as "friends-of-friends" instruments
- Not possible to use $H X$ or $H^{2} X$ as instruments
- With multiple independent networks, $H^{(2)} X$ can instrument for $H^{(1)}$ y to estimate $\frac{\lambda}{1-p}$
- Estimate p by looking at how many links observed in $H^{(2)}$ are missing in $H^{(1)}$

Discussion

What if adjacency matrix is row-normalized?

- Adjacency matrix is often row-normalized:

$$
y_{i}=\lambda\left(\frac{1}{G_{i}} \sum_{j=1}^{n} y_{j} G_{i j}\right)+x_{i} \beta+\varepsilon_{i} \quad, \quad G_{i}=\sum_{j=1} G_{i j}
$$

- Denominator is also changing \Rightarrow no/attenuation bias?

When do we observe multiple copies of the same network?

- Multiple networks may be collected, but they seem different
- Not clear that network of loans is network of friendships with more missingness
- Depending on the outcome, not clear if either is exactly the network of interest
- Asymmetric networks seem to reflect asymmetric relations
- If i visits j but j does not visit i, maybe i is influenced by j but not vice versa
- Networks data often symmetrized in practice, but maybe asymmetry might be important (Comola and Fafchamps, 2014; Auerbach, 2019; Gao, Li, and Xu, 2022)
- Will matrix completion under a low-rank assumption work instead?

Is missingness random in practice?

- Stronger links may be more likely to be reported (Griffith, 2022)
- Agents may have incentive to misreport links (Comola and Fafchamps, 2017)
-What type of non-random missingness can be accommodated?
- Lewbel et al. (2023, JPE) assumes that network is unobserved. Can these estimates be used for a test on missingness?

References

References i

Auerbach, E. (2019). Testing for differences in stochastic network structure. arXiv preprint arXiv:1903.11117.

Comola, M. and M. Fafchamps (2014). Testing unilateral and bilateral link formation. The Economic Journal 124(579), 954-976.
Comola, M. and M. Fafchamps (2017). The missing transfers: Estimating misreporting in dyadic data. Economic Development and Cultural Change 65(3), 549-582.
Gao, W. Y., M. Li, and S. Xu (2022). Logical differencing in dyadic network formation models with nontransferable utilities. Journal of Econometrics.
Griffith, A. (2022). Name your friends, but only five? the importance of censoring in peer effects estimates using social network data. Journal of Labor Economics 40(4), 779-805.

Lewbel, A., X. Qu, and X. Tang (2023). Social networks with unobserved links. Journal of Political Economy 131(4), 000-000.

