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Summary



Setting

• Peer effects regression:
y = λGy + Xβ + ε

where G is adjacency matrix of the network

• Many results on identification and estimation when G is perfectly observed

• Less is known when G is unobserved or observed with error
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Network Data Often Unobserved or Observed with Error

• Network data is high dimensional and thus costly to collect

• To limit data collection, surveyors may ask respondees to list X friends

• Respondees may not be able to recall all connections

• Relationships are intensities, hard to quantify and elicit
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This Paper

Peer effects regression when network data is missing at random

1. Shows that augmentation bias arises

2. Provides 2SLS-based solution when multiple networks are observed
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Augmentation Bias

• Let H be observed adj. matrix with p proportion of links randomly missing

• Using H as plug-in for G leads to augmentation bias:

y =
(

λ

1− p

)
Hy + Xβ + v , E[v|X,G] = 0

• In OLS: attenuation bias with mean zero white noise measurement error

• Missingness has negative mean

• Intuition: an individual is affected by 5 friends but we misattribute to 3
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2SLS with Multiple Networks

• Gy is endogenous; use GX or G2X as “friends-of-friends” instruments

• Not possible to use HX or H2X as instruments

• With multiple independent networks, H(2)X can instrument for H(1)y to
estimate λ

1−p

• Estimate p by looking at how many links observed in H(2) are missing in H(1)
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Discussion



What if adjacency matrix is row-normalized?

• Adjacency matrix is often row-normalized:

yi = λ

 1
Gi

n∑
j=1

yjGij

+ Xiβ + εi , Gi =
∑
j=1

Gij

• Denominator is also changing⇒ no/attenuation bias?
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When do we observe multiple copies of the same network?

• Multiple networks may be collected, but they seem different

• Not clear that network of loans is network of friendships with more missingness

• Depending on the outcome, not clear if either is exactly the network of interest

• Asymmetric networks seem to reflect asymmetric relations

• If i visits j but j does not visit i, maybe i is influenced by j but not vice versa

• Networks data often symmetrized in practice, but maybe asymmetry might be
important (Comola and Fafchamps, 2014; Auerbach, 2019; Gao, Li, and Xu, 2022)

• Will matrix completion under a low-rank assumption work instead?
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Is missingness random in practice?

• Stronger links may be more likely to be reported (Griffith, 2022)

• Agents may have incentive to misreport links (Comola and Fafchamps, 2017)

• What type of non-random missingness can be accommodated?

• Lewbel et al. (2023, JPE) assumes that network is unobserved. Can these
estimates be used for a test on missingness?
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