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Transcriptional memory at the nuclear periphery
Jason H Brickner

A number of inducible yeast genes are targeted to the nuclear

periphery upon transcriptional activation. However, when

repressed again, the INO1 and GAL1 genes remain at the

nuclear periphery for multiple generations. Retention at the

nuclear periphery represents a novel type of transcriptional

memory; the peripherally localized, recently repressed state of

GAL1 is activated more rapidly than the nucleoplasmically

localized long-term repressed state of GAL1. This rapid

reactivation involves localization at the nuclear periphery, the

SWI/SNF chromatin remodeling complex, the histone variant

H2A.Z and the Gal1 protein itself. Here, I review what we have

learned about this type of transcriptional memory in yeast, what

remains to be resolved and the challenges associated with

understanding such epigenetic phenomena.
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Gene recruitment to the nuclear periphery
DNA is spatially organized within the nucleus. It has long
been appreciated that certain parts of the genome localize
at the nuclear periphery and associate with the nuclear
envelope [1–4]. Peripheral localization has been proposed
to promote transcriptional repression because much of the
DNA at the nuclear periphery is transcriptionally
repressed; heterochromatin, centromeres, telomeres and
chromatin insulators (which can block enhancer function)
localize at the nuclear periphery [5]. Proximity to the
nuclear envelope in Saccharomyces cerevisiae [6] and associ-
ation with the mammalian nuclear lamina [7,8] promotes
transcriptional silencing of some genes.

Recent work, however, shows that peripheral localization
is not always repressive. Artificially tethering of a reporter
gene that lacks any silencing elements to the nuclear
envelope does not promote repression [6]. Furthermore,
certain inducible yeast genes were found to be targeted to

the nuclear periphery upon activation [9,10,11!!]. Recent
work has shown that many genes undergo recruitment to
the nuclear periphery [12–15] and that peripheral local-
ization correlates with a physical association with the
nuclear pore complex (NPC) [10,12,16]. Peripheral tar-
geting promotes transcription [9,13,17,18] and may be
important for post-transcriptional events such as mRNA
processing, mRNA export or translation [10,12].

The mechanism of gene recruitment
Physical interaction of genes with the NPC in vivo has
been observed using different methods [10,12,16,19].
Furthermore, targeting of genes to the nuclear periphery
requires NPC components, the SAGA histone acetyl-
transferase complex, the transcription-mRNA export
complex TREX2 and the export receptor Mex67
[14,18–20]. These observations suggest that relocalization
of genes to the nuclear periphery represents a ‘tethering’
of genes to the NPC. Consistent with this interpretation,
in mutant strains lacking in which NPCs cluster together
into plaques, there is a significant increase in the colo-
calization of the HXK1 gene with clustered NPCs upon
transcriptional activation [13].

However, it is worth mentioning that a direct interaction
with the NPC and genes has not been shown. Further-
more, the fraction of cells in whichHXK1 colocalized with
clustered NPCs (17% of the cells in the population) is still
much lower than the fraction of the cells in whichHXK1 is
localized at the nuclear periphery (>85% of the cells in
the population). Also, it is unclear if the"150NPCs in the
typical haploid nucleus in yeast would be able to accom-
modate both a large number of transcriptionally active
genes (as suggested by the NPC association data in refs.
[11!!,12,16]) and nucleo-cytoplasmic transport, without
interference. Therefore, it remains possible that the site
to which genes are recruited is actually the nuclear
envelope, a platform of the filamentous Mlp/Tpr proteins
or other, unidentified structures at the nuclear periphery
that are influenced by the integrity of theNPC. That said,
for the purposes of this review, I will build on the simplest
model for gene recruitment that is consistent our current
state of knowledge: that genes are targeted to the NPC.

Gene recruitment of one gene to the nuclear periphery
requires the 30 UTR [13]. Furthermore, the association of
certain genes with NPC components, as measured by
chromatin immunoprecipitation, is sensitive to RNase
treatment [12]. The connection between peripheral relo-
calization of genes, the NPC and RNA elements import-
ant for mRNA export suggested that relocalization might
represent a consequence of transcription. In other words,
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relocalization of genes to the nuclear periphery might be
mediated by a bridging interaction between chromosomal
DNA, the mRNA, export factors and the NPC. If so, then
relocalization to the nuclear periphery might simply
represent an emergent property of highly expressed
genes, rather than a specific targeting event. Several
results argue against this interpretation. From exper-
iments using a temperature-sensitive allele of RNA poly-
merase to block transcription, it became clear that
transcription is not essential for either the interaction
of GAL1 with the NPC [16] or for relocalization of
INO1 to the nuclear periphery [11!!]. Furthermore,
association of the Mex67 mRNA export receptor with
the GAL2 gene was independent of RNA, suggesting that
the export receptor can interact directly with DNA or
chromatin [14]. Also, INO1 and GAL1 remain at the
nuclear periphery for generations after transcription is
repressed (see below; ref. [11!!]). Finally, we have
recently identified an eight basepair element in the
INO1 promoter that functions as a ‘DNA zip code’ to
target an ectopic locus to the nuclear periphery [18].
Therefore, although the mRNAmay play important roles
in the localization of genes with the NPC after transcrip-
tion is initiated (see below), transcription-independent
mechanisms of gene relocalization also occur and reloca-
lization to the nuclear periphery represents an active and
specific targeting mechanism.

Transcriptional memory at the nuclear
periphery
In addition to a role in transcriptional activation, we have
identified a role for peripheral targeting in the rapid
reactivation of recently repressed genes. When cells are
shifted from activating to repressing conditions, both the
INO1 and GAL1 genes remain at the nuclear periphery
through multiple cell divisions [11!!]. Retention of GAL1
at the nuclear periphery is very stable, lasting greater than
seven generations. This suggested that peripheral local-
ization might represent a novel epigenetic state that
reflects previous transcription. Furthermore, it suggested
that this recently repressed ‘memory’ state might be
functionally different from the long-term repressed state.
Indeed, the reactivation of the GAL1 gene, even after
seven generations of repression, is much faster than the
initial activation of the GAL1 gene [11!!]. This suggested
that cells have cellular and molecular mechanisms to
mark previously expressed genes and to promote their
reactivation, a phenomenon I call adaptive transcriptional
memory.

Concurrent work independently demonstrated that
previous transcription of GAL1, GAL7 and GAL10 pro-
moted their rapid reactivation [21!!]. Rapid reactivation
of GAL1 required as little as one hour of activation and
persisted through cell division. The rapid reactivation of
the GAL1 gene was not due to the lingering association of
RNA polymerase II, the TATA binding protein (which

binds upstream of preinitiation complex formation) or
coactivators such as Mediator (which interacts with RNA
Polymerase II to promote transcription), the SWI/SNF
chromatin remodeling complex or the SAGA histone
acetyltransferase [21!!]. Therefore, recently repressed
GAL1 is not primed through a lingering association with
a stalled RNA polymerase II, but through faster recruit-
ment of RNA polymerase II upon reactivation.

Defects in mRNA processing can also lead to post-tran-
scriptional targeting of genes to the nuclear periphery.
GAL1 promoter-driven reporter genes that produce
mRNAs that are improperly polyadenylated remain
associated with post-transcriptional RNA ‘dots’ at the
nuclear periphery [22]. Localization at the nuclear per-
iphery is maintained for approximately one hour after
transcription is repressed [22,24!], increases with defects
in mRNA processing [22] and requires both an mRNA
export factor (TREX 2; ref. [23!]) and the nuclear exo-
some, an exoribonuclease complex that degrades aberrant
nuclear mRNAs [24!]. Likewise, in mutants lacking the
THO complex (which coordinates mRNA processing
with export), an intermediate in the mRNA processing
pathway accumulates associated chromatin [25!]. This
intermediate is visible as an RNA dot, requires the
nuclear exosome for its formation and leads to the relo-
calization of genes to the nuclear pore complex [25!]. It is
unclear how this mechanism of peripheral retention
relates to the epigenetic peripheral retention observed
for the endogenous, wild type GAL1 gene.

The mechanism of transcriptional memory
Although both INO1 and GAL1 are retained at the
nuclear periphery after transcriptional repression, the
mechanism of GAL1 transcriptional memory is easier to
study because it lasts longer [11!!]. Recently repressed
GAL1 is different from long-term repressed GAL1 in
several important ways: (1) it is more rapidly reactivated,
(2) it is localized at the nuclear periphery and (3) it is
activated by a different mechanism (see below; refs.
[11!!,21!!]). Therefore, I propose that cells have mol-
ecular and cellular mechanisms to mark recently
repressed genes and that this creates a novel epigenetic
‘memory’ form of the gene.

Many epigenetic phenomena require post-translational
histone modifications or alterations in nucleosome com-
position [26–29]. Adaptive transcriptional memory
requires two chromatin-based factors: the histone variant
H2A.Z [11!!] and the SWI/SNF chromatin remodeling
complex [21!!] play essential roles in either the establish-
ment of transcriptional memory or the rapid reactivation
of the memory state.

H2A.Z nucleosomes have several functions. They are
found in subtelomeric regions, where they prevent the
spread of transcriptional silencing from telomeres [30].
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They are found in the promoters of many eukaryotic
genes, where they promote transcriptional activation [31–
36]. H2A.Z is also essential both for the retention of INO1
andGAL1 at the nuclear periphery after repression and for
the rapid reactivation of these genes [11!!]. Importantly,
the initial targeting of INO1 or GAL1 to the nuclear
periphery and the initial activation of these genes is
not dependent on H2A.Z. Thus, H2A.Z plays a specific,
essential role in the peripheral retention and reactivation
of certain recently repressed genes.

The reactivation of GAL1 does not require histone modi-
fications that are associated with transcriptional activation
[21!!]. This is important because previous work had
shown that immediately after GAL1 transcription is
repressed, the trimethylation of lysine 4 on histone H3,
which is associated with transcription, persists [37]. How-
ever, rapid reactivation of GAL1 does require the SWI/
SNF chromatin-remodeling complex. In the absence of
the Swi2 protein, the reactivation of GAL1 is no faster
than its initial activation. The initial activation of GAL1
was normal in the swi2D mutant, indicating that, like
H2A.Z, the role of SWI/SNF was specific to the reactiva-
tion of the memory state.

The role of SWI/SNF appears to be to counteract the
repressive effects of either Isw1 or Isw2 remodeling
complexes, two related chromatin-remodeling complexes
implicated in transcriptional repression. The requirement
for SWI/SNF inGAL1 reactivation was bypassed in strains
lacking either Isw1 of Isw2 [21!!]. When the swi2D
mutation was combined with either isw1D or isw2D, the
double mutant exhibited normal transcriptional memory,
reactivating GAL1 more rapidly.

The role of DNA localization in transcriptional
memory
The correlation of rapid reactivation with peripheral
localization suggests that localization may be important
for transcriptional memory. Loss of H2A.Z causes both a
dramatic decrease in the reactivation rate and loss of
peripheral localization of INO1 and GAL1 after repression,
suggesting that peripheral localization is coupled to reac-
tivation and both are dependent on H2A.Z. Intriguingly,
H2A.Z physically associates with the NPC-associated
protein Nup2 [38]. Also, tethering silenced genes to
the NPC creates a boundary that prevents the spread
of silencing [39] and loss of Nup2 causes a spread of
silencing from telomeres, similar to the effect of loss of
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Figure 1

Three distinct states of the GAL genes. Initial activation of the GAL1, GAL2, GAL7 and GAL10 genes (step 1) through the Gal3 galactose sensor, leads
to relocalization to the nuclear periphery through association with the NPC and the production of the Gal1 protein. Gal1 binds and inhibits the repressor
Gal80. After repressing transcription (via the glucose repression system), the genes remain at the nuclear periphery in a memory state that can be
rapidly reactivated. The establishment of the memory state requires chromatin changes (indicated as red nucleosomes). Eventually, transcriptional
memory is lost (reset, step 5). The memory state differs from the long-term repressed state in its localization, its chromatin requirements for activation
and its rate of reactivation.
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H2A.Z [30,38]. Therefore, perhaps the memory state and
boundary activity represent mechanistically related chro-
matin states that both require H2A.Z nucleosomes and
interaction with the NPC.

Artificially tethering the INO1 gene to the nuclear per-
iphery leads to more rapid transcriptional activation
[9,11!!]. This effect may represent a type of artificial
memory. Like genuine transcriptional memory, tethering
does not affect the ultimate steady-state activation of
INO1 [11!!]. However, unlike genuine memory, tethering
to the nuclear envelope induces rapid activation in the
absence of previous transcription.

The mechanism of epigenetic inheritance
SWI/SNF is required for rapid reactivation of GAL1.
H2A.Z is required for rapid reactivation of both GAL1
and INO1 and for their retention at the nuclear periphery
after repression. The requirement for chromatin factors for
rapid reactivation and post-transcriptional peripheral local-
ization raised the possibility that transcriptional memory
might represent a self-perpetuating chromatin state and
that this might explain its epigenetic inheritance. In other
words, a change in the chromatin state that reflects the
history of the gene might ‘bookmark’ a gene and, if it
persists until DNA replication, this bookmark might
somehow promote its own inheritance. The concept that

130 Cell structure and dynamics

Figure 2

Regulation of transcriptional memory. The states and the interconversion between them are the same as in Figure 1. Conversion between the three
states is regulated by the production of a cytoplasmic regulator (the Gal1 protein in the case of the GAL genes). The cytoplasmic regulator functions
upstream of the SWI/SNF chromatin-remodeling complex, the H2A.Z histone variant and peripheral localization (indicated as the NPC) to promote
transcriptional memory (step 3). Because we cannot order these events relative to each other currently, I represent them as parallel inputs. SWI/SNF is
necessary to counteract the conversion of the active state into the long-term repressed state by the ISW1 and ISW2 complexes. The memory state can
be generated directly from the long-term repressed state by expression of the cytoplasmic regulator (artificial memory; step 6). Grey box: possible role
for SWI/SNF, H2A.Z and peripheral localization in the generation of artificial memory.
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chromatin might promote its own inheritance to produce
stable epigenetic changes in gene expression has been
broadly endorsed and has even been proposed as a modern
definition of epigenetics [40]. However, the perpetuation
of epigenetic states through chromatin alone, without
input from trans-acting factors, is still controversial and
has been greeted with skepticism [41].

To directly test the hypothesis that chromatin alone is the
source of epigenetic inheritance of GAL transcriptional
memory, a recent study used heterokaryon analysis, in
which cells fuse, but nuclei do not [42!!]. This study
showed that rapid reactivation of GAL1 could be trans-
ferred from one cell to another via cytoplasmic mixing.
Therefore, GAL transcriptional memory is a cytoplasmi-
cally inherited phenomenon. The cytoplasmic factor was
identified as the Gal1 protein itself; a gal1D mutant is
unable to rapidly reactivate the GAL7 gene. Furthermore,
constitutive expression of GAL1 was sufficient to confer
rapid reactivation of GAL7 [42!!]. GAL1 encodes the
galactokinase enzyme. Galactokinase is 70% identical
to the galactose sensor Gal3, which senses galactose
and inactivates the Gal80 transcriptional repressor [43].
Therefore, Gal1 may directly inhibit Gal80, priming the
GAL genes for reactivation. The "100 fold induction of
the GAL1 gene, coupled with an extremely long half-life,
provides a plausible mechanism for the inheritance of
transcriptional memory for >7 generations [11!!,42!!].
Thus, although GAL transcriptional memory requires
chromatin-based mechanisms, the inheritance of memory
is mediated by a cytoplasmic factor.

Based on what we have learned from the regulation of the
GAL genes, I propose a model for adaptive transcriptional
memory (Figure 1). For genes that utilize this type of
transcriptional memory, three qualitatively distinct states
can exist: a long-term repressed state, an active state and
an epigenetic memory state. Each state is distinguished
from the other two by its subnuclear localization, its
transcriptional activity and its mechanism of regulation
(Figures 1 and 2). Furthermore, I propose that it is
possible to convert between any state and any other state.
Conversion from the active state to the memory state
requires a cytoplasmic effector (Gal1 in the case of the
GAL genes). I propose that the cytoplasmic effector
functions upstream of peripheral localization, SWI/SNF
and H2A.Z (Figure 2). The long-term repressed state can
also be converted directly into the memory state (i.e.
artificial memory) by expression of the cytoplasmic reg-
ulator and, perhaps, by tethering to the nuclear periphery
(Figure 2).

Two observations indicate that the memory state is
qualitatively different from the long-term repressed state
and that reactivation occurs by a novel mechanism that is
not simply due to titration of a negative regulator. First,
the long-term repressed state and the memory state

localize to different parts of the nucleus (Figure 1).
Second, the requirement for H2A.Z and SWI/SNF in
rapid reactivation of recently repressed INO1 and GAL1 is
specific; loss of these proteins has no significant effect on
the activation of long-term repressed INO1 and GAL1
[11!!,21!!]. This, too, is not simply due to a change in the
rate-limiting step because SWI/SNF and H2A.Z are not
required for the rapid activation of GAL1 when cells are
shifted from non-repressing raffinose medium to activat-
ing galactose medium (our unpublished data; ref. [21!!]).
Finally, if the tethering of INO1 truly generates artificial
memory and if cytoplasmic regulators are a general fea-
ture of transcriptional memory, this suggests that their
role can be bypassed by tethering INO1 to the nuclear
envelope. If so, then the transient expression of a cyto-
plasmic regulator (like Gal1) generates a transcriptional
memory through downstream chromatin modifications
mediated by peripheral localization, SWI/SNF and
H2A.Z (Figures 1 and 2).

Future directions
Futureworkwill integratewhatwehave learned to create a
coherent model of transcriptional memory and to answer a
number of important questions. How do cytoplasmic fac-
tors, chromatin-based changes and gene localization work
together to create a marked promoter that can be activated
more rapidly?What cytoplasmic factors, if any, are involved
in INO1 transcriptional memory? How many genes utilize
this type of transcriptionalmemory?What are the selective
advantages of this system? Finally, do metazoan cells
utilize this type of transcriptional memory? SWI/SNF
and H2A.Z are conserved among eukaryotes and periph-
eral targeting of genes has been observed in flies [44!] and
mammalian cells [45!]. If metazoan cells utilize adaptive
transcriptional memory, it might provide a mechanism by
which environmental or physiological inputs can produce
short-term to long-term changes in gene expression.
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