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Inheritance of epigenetic transcriptional memory
Tiffany Ge and Jason H Brickner*

Epigenetic memory allows organisms to stably alter their 
transcriptional program in response to developmental or 
environmental stimuli. Such transcriptional programs are 
mediated by heritable regulation of the function of enhancers 
and promoters. Memory involves read–write systems that 
enable self-propagation and mitotic inheritance of cis-acting 
epigenetic marks to induce stable changes in transcription. 
Also, in response to environmental cues, cells can induce 
epigenetic transcriptional memory to poise inducible genes for 
faster induction in the future. Here, we discuss modes of 
epigenetic inheritance and the molecular basis of epigenetic 
transcriptional memory.
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Introduction
An improved understanding of nuclear architecture has 
begun to reveal how genome organization affects transcrip-
tion and other biological functions. Changes in chromatin 
conformation and composition influence gene expression 
[1]. These epigenetically heritable alterations are one of the 
ways in which cells respond to, and remember, developmental 
or environmental stimuli. Epigenetic regulation and 
memory involve mitotically — and sometimes trans-gen-
erationally — heritable mechanisms [2]. For example, in 
worms, fruit flies, mice, and humans, changes in paternal or 
maternal diet can reprogram the metabolism of offspring in 
future generations to cause a predisposition toward obesity 
or associated conditions [3–7]. Stable changes in transcrip-
tion are associated with changes in DNA methylation, 
posttranslational histone modifications [8], transcription 
factor (TF) activity, noncoding RNA expression, or mRNA 

stability [9]. Recent experiences can also be remembered for 
several mitotic cell divisions; some inducible genes exhibit 
heritable epigenetic transcriptional memory following ex-
posure to a transient stimulus [10]. Transcriptional memory 
poises genes for faster reactivation, allowing cells to better 
adapt to a previously encountered condition [11–15]. Stable 
transcriptional states and less-stable transcriptional memory 
both involve heritable regulation of promoter and enhancer 
functions in cis. In this review, we will discuss both general 
molecular mechanisms of heritable epigenetic regulation 
and, more specifically, epigenetic transcriptional memory.

DNA methylation as an epigenetic regulator of 
transcription
One of the best-understood mechanisms of heritable 
transcriptional regulation is the methylation of DNA. 
The amino group on adenosine is methylated in bac-
teria, and the C5 position of cytosine is methylated in 
plants, mammals, and certain fungi such as Neurospora 
crassa [16]. However, DNA methylation is not universal; 
Drosophila has very low levels of cytosine methylation, C. 
elegans has low levels of adenosine methylation but not 
cytosine methylation [17], and budding and fission 
yeasts lack DNA methylation [18].

In mammals, methylation of cytosine in cytosine–gua-
nine dinucleotides (CpG) can be inherited during mi-
tosis because it is re-established following DNA 
replication. Unmethylated cytosine nucleotides are in-
corporated into newly synthesized strands during DNA 
replication, producing hemimethylated CpGs. These 
hemimethylated CpGs are recognized by maintenance 
DNMT1, which methylates the cytosines on the 
daughter strand to re-establish methylation patterns. 
DNMT1 interacts with replication cofactor Proliferating 
Cell Nuclear Antigen to couple replication to DNA 
methylation [19] (Figure 1a). The de novo DNA me-
thyltransferases DMNT3A, DNMT3B, and DNMT3C 
establish new cytosine methylation on unmethylated 
sites (Figure 1a). DNMT3A/B/C can be recruited to 
sites in the genome by TFs [20], histone modifications 
[21], and other mechanisms [20].

CpG methylation impacts transcription by promoting stable 
silencing of many genes, intergenic regions, repeat ele-
ments, and transposons during cell differentiation, em-
bryonic development, and X-inactivation [22,23]. In 
mammals, abnormal CpG methylation profiles can result in 
abnormal gene expression and phenotype [6]. Cytosine 
methylation can lead to different outcomes based on its 
context. Methylation near promoters often facilitates 
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Figure 1  
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Epigenetic inheritance mediated by DNA methylation, lncRNAs, and histone modifications. (a) DNMT1 is required for recognizing hemimethylated 
CpGs and maintaining DNA methylation after replication in organisms with DNA methylation. It interacts with PCNA and is recruited by ubiquitination 
of histone H3 and PAF15 by UHRF1. LncRNAs can also recruit DNMT1 to chromosomal loci to promote DNA methylation [44,49]. DNMT3A/3B 
establish de novo DNA methylation, particularly during embryogenesis and establishing imprinting. These methyltransferases are important in 
establishing epigenetic memory via DNA methylation. (b) In propagating H3K9me3 in fission yeast, HDAC Clr3 (yellow) is recruited by HP1 and 
sequence-specific DNA-binding factors (light-blue circle) at silencer elements or nucleation sites (NS) to deacetylate histones and reduce histone 
turnover, thus maintaining the H3K9me3 mark. A certain level of chromatin-bound Clr3 and high H3K9me3 density is required to keep the H3K9me3 
mark and promote the dual read–write activity of Clr4Suv39h (red), which can bind methylated H3K4 via its chromodomain and catalyze methylation of 
H3K9 to promote the propagation of heterochromatin [60]. (c) For H3K27me3 mark in mouse embryonic stem cells, self-propagation involves 
H3K27me3 marks on parental histones, PRC2 complex, and linker histone H1. The EED reader component of PRC2 complex binds H3K27me3 and 
the EZH2 writer component of PRC2 catalyzes methylation of H3K27 on adjacent nucleosomes. In mESCs, after H3K27me3 is diluted during DNA 
replication due to newly incorporated histones (pink), linker histone H1 (yellow) compacts chromatin at heterochromatic regions to promote restoration 
of H3K27me3 on repressive genes [65]. Repressed chromatin with higher levels of H1 experience rapid re-establishment of H3K27me3 after 
replication, while active chromatin with lower levels of H1 experience slower rates [65]. (d) Establishment of epigenetic memory in yeast and humans 
requires RNAPII-independent H3K4me2, which promotes SWR1-dependent incorporation of histone variant H2A.Z upstream of poised gene 
promoters as well as recruitment of poised RNAPII, and interaction with the nuclear pore. This histone mark can be transmitted through mitosis by a 
proposed mechanism whereby the SET3C reader recognizes H3K4me2, interacts with Leo1, a subunit of Paf1 complex, to recruit a Spp1-deficient 
version of COMPASS that re-establishes H3K4me2 [14]. DNMT1; DNA Methyltransferase 1, PCNA; Proliferating Cell Nuclear Antigen, UHRF1; 
Ubiquitin-like with PHD and Ring Finger domains 1, HDAC; Histone Deacetylase, EED; Embryonic Ectroderm Development, mESCs; mouse 
Embryonic Stem Cells, SWR1; Swi2/Snf2-Related ATPase, COMPASS; Complex of proteins associated with Set1, PHD; Plant Homeodomain, RNAPII; 
RNA polymerase II.
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transcriptional repression by inhibiting binding of tran-
scriptional activators or methylation-sensitive TFs [24] and 
recruiting repressive methyl-binding proteins. Furthermore, 
DNA methylation over promoters is anticorrelated with 
expression of genes associated with differentiation during 
eye development in mammals [23]. In contrast, DNA me-
thylation in the gene body is associated with gene expres-
sion in mammals [19], but has an unclear functional 
significance in plants [25].

Despite the stability and conservation of DNA methy-
lation patterns, aging [26], DNA damage [27], spaceflight 
[28], or drought stress [29] can alter CpG methylation, 
leading to new, stable methylation profiles and tran-
scriptional patterns. Stress-induced changes in DNA 
methylation can even prime the future offspring to 
better tolerate or effectively respond to such stresses 
[30] in a manner reminiscent of epigenetic transcrip-
tional memory (see below). It should be noted, however, 
that stable transgenerational epigenetic inheritance of 
DNA methylation, while relatively common in plants, is 
rare in mammals because of erasure during early em-
bryonic development [31].

Noncoding RNAs as epigenetic regulators of 
transcription
Most of the transcriptional output in plants and animals 
are long noncoding RNAs (lncRNAs) [32]. LncRNAs are 
short-lived, >  200-bp-long, nuclear [33] RNAs that fa-
cilitate transcriptional regulation. These transcripts are 
cell-type-specific, transcribed from sequences over-
lapping or upstream of coding genes. Dysregulated ex-
pression of lncRNAs has been implicated in cancer 
[34–36] and neurodegenerative diseases [37–42]. 
LncRNAs influence transcription by associating with 
chromatin and influencing the recruitment of enzymes 
that mark either DNA or histones. Their effects can 
produce long-term changes in the transcription of the 
genome (Figure 1a) [43–46]. For example, the Xist 
lncRNA coats the inactive X chromosome, stimulating 
recruitment of polycomb-repressive complex 1 (PRC1) 
and 2 (PRC2), which methylates histone H3 on lysine 27 
and ubiquitinates H2A [44,47], repressing transcription 
[48]. Likewise, the TINCR lncRNA recruits DNA me-
thyltransferase 1 (DNMT1) to chromosomal loci to 
promote DNA methylation and inhibit transcription 
(Figure 1a) [44,49]. However, lncRNAs can also promote 
transcription; in response to a stimulus eliciting an im-
mune response, immune gene promoters associate with 
immune gene-priming lncRNA Upstream Master lncRNA 
of the Inflammatory cytokine Locus [50]. Upstream Master 
lncRNA of the Inflammatory cytokine Locus recruits the 
histone methyltransferase complex WDR5–MLL1, pro-
moting trimethylation of H3K4, which primes them for 
enhanced response upon subsequent exposure, a form of 
transcriptional memory [50]. Although there is still much 

to uncover on the specifics of these mechanisms, it is 
evident that lncRNAs can function in trans to alter the 
chromatin landscape to induce heritable changes in 
transcription.

Histone modifications as epigenetic 
regulators of transcription
Posttranslational modification (PTM) of histones is asso-
ciated with shorter-term, less-stable epigenetic regulation 
than CpG methylation. DNA is wrapped around histone 
octamers, which comprise two copies of each core histone 
proteins H2A, H2B, H3, and H4. At the amino terminus of 
each of these proteins are unstructured, positively charged 
tails. Chemical modifications of histones within nucleo-
somes are associated with — and required for — proper 
transcriptional regulation in cis [51]. Transcription is asso-
ciated with acetylation of histone tails. Histone acetyl-
transferases are generally recruited to active genes by 
sequence-specific TFs [52]. Histone acetylation neutralizes 
the net positive charge of histones, reducing their affinity 
for negatively charged DNA [51], increasing access to 
DNA, and allowing sequence-specific TFs to bind. 
Acetylated lysines on histones also recruit factors and 
protein complexes with chromatin-modifying or chromatin- 
remodeling activities [51]. Acetyltransferases and deacety-
lases play critical roles in transcriptional activation and re-
pression, respectively.

Methylation of histones enables binding by proteins 
bearing at least ten distinct reader domains, such as 
chromodomains (for histone H3 lysine-9 methylation), 
Plant Homeodomain domains (for H3 lysine-4 methy-
lation), and specialized WD40 domains (for H3 lysine-27 
methylation). Transcriptional repression is associated 
with methylation of H3 lysine 9 (H3K9me) over con-
stitutively silenced heterochromatin and H3 lysine 27 
(H3K27me) over conditionally silenced facultative het-
erochromatin [53]. Meanwhile, active regions are asso-
ciated with methylation of H3 lysine 4 (H3K4me) and 
H3 lysine 36 (H3K36me). Thus, histone methylation 
demarcates different parts of the genome: H3K4me1 at 
enhancers [54], H3K4me3 at gene promoters, and 
H3K36me3 over gene bodies [54]. H3K4me2 marks are 
found at promoters and gene bodies at both active and 
poised genes in yeast [55,56]. The effects of each of 
these histone methylation marks reflect their ability to 
recruit co-repressors such as Heterochromatin Protein 1 
(HP1) (in the case of H3K9me3), histone deacetylases 
(in the case of H3K27me3), or co-activators histone 
acetyltransferases (in the case of H3K4me3).

Based on contact frequency between chromosomal regions, 
chromatin can be organized into at least two distinct com-
partments called A and B [57]. The A compartment contains 
active chromatin — nearly all active promoters, distal en-
hancer elements, and active transcription start sites — while 
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the B compartment contains inactive, quiescent chromatin, 
and most transcription termination sites [57]. The A com-
partment comprises two subcompartments, A1 and A2, 
which are enriched for genes and active chromatin marks 
such as H3K4me1, H3K27ac, H3K36me3, and H3K79me2 
[58]. While both are gene-rich, A2 associates more with 
H3K9me3, contains longer genes, is replicated later than A1, 
and is farther from nuclear speckles than A1 [58]. The B 
compartment is made up of subcompartments B1, B2, B3, 
and B4, of which B1 correlates with features of facultative 
heterochromatin (i.e. higher levels of repressive mark 
H3K27me3, lower levels of active mark H3K36me3), B4 
with heterochromatin-associated repressive marks 
(H3K9me3 and H4K20me3), while B2 and B3 do not con-
tain commonly known histone marks [57,58]. Thus, histone 
modifications also reflect genome compartmentalization.

Parental histones and their PTMs can be reincorporated 
near their original location following DNA replication 
[59]. Reincorporation, followed by recognition of these 
marks by ‘reader’ proteins, which recruit ‘writer’ en-
zymes, can lead to heritable histone modifications. Such 
read–write inheritance has been demonstrated for H3K9 
[60,61] and H3K27 [62–66] methylation (Figure 1b, c) 
and facilitates inheritance of long-term silencing.

Are the histone marks associated with active transcrip-
tion heritable? Unlike repressive chromatin marks, most 
histone modifications associated with transcription are 
not heritable, partially due to the continuous displace-
ment of parental nucleosomes by transcription [59]. 
Furthermore, erasers such as histone deacetylases and 
demethylases actively remove marks such as H3K27ac 
and H3K4me3 [11,55] upon repression of inducible 
genes. Likewise, whereas nucleosomes over repressed 
chromatin domains are reincorporated through many 
replication cycles, nucleosomes at active genes are 
poorly retained through DNA replication [59,65]. Thus, 
in general, histone modifications associated with active 
transcription are reflective of current transcription and 
are lost quickly, making them poor sources of heritable 
epigenetic regulation.

Epigenetic transcriptional memory
A potential exception to the previous statement is the 
phenomenon of epigenetic transcriptional memory, 
which has been observed in yeast [55,67], flies [68], 
plants [69,70], and mammals [6,11]. Certain inducible 
genes remain poised for rapid reactivation for several 
generations after removal of the inducing stimulus 
[11,62,67,68,71,72], and mitotic inheritance of this type 
of transcriptional memory requires histone modifica-
tions. Memory consists of 1) activation of inducible 
genes, 2) upon removal of the stimulus, a poised state 
(i.e. transcriptional memory) is established at certain 
genes, 3) memory is inherited through mitosis, and 4) 

upon a second exposure to the inducing stimulus, these 
genes are activated more rapidly or more strongly than in 
naive cells (Figure 2). This process is akin to priming or 
acclimation in plants in response to various stresses such 
as drought, heat, salt, irradiation, and pathogens [73–76]. 
In several cases, memory requires a physical interaction 
with the nuclear pore complex (NPC), which has been 
shown to play a part in regulating gene expression 
[11,77,78].

A well-characterized model for memory is a set of yeast 
genes induced by starvation for the essential sugar in-
ositol. When yeast cells are starved for inositol, target 
genes such as Inositol requiring 1 (INO1) and choline re-
quiring 1 are activated and rapidly targeted to the nuclear 
periphery through a physical interaction with the NPC 
[67]. The interaction with the NPC requires binding of 
the TFs Cbf1 and Put3 does cis-acting DNA zip codes 
upstream of the promoter [79,80]. Resupplementation of 
inositol leads to rapid repression of these genes, but they 
remain poised at the nuclear periphery for approximately 
four generations [62,71]. Retention at the nuclear per-
iphery after repression involves a distinct molecular 
mechanism from that utilized during active transcription 
(i.e. different nuclear pore proteins, different TFs, 
and different molecular requirements, see Figure 2a). 
During memory, the nucleosomes over the promoters 
and 5’-ends of these genes are both unacetylated and 
possess dimethylated histone H3 lysine 4 (H3K4me2). 
This combination of low acetylation and H3K4me2 ap-
pears to be unique to memory [55]. In the case of the 
INO1 promoter, memory also leads to incorporation of 
H2A.Z into upstream nucleosomes (Figure 2a). Finally, 
the promoters of such poised genes are associated with a 
pre-initiation form of RNAPII [11,14,55,71]. Upon a 
second exposure to inositol starvation, these genes ex-
hibit faster reactivation, leading to a fitness advantage 
over naive cells [14].

Similar phenomena have been observed in flies re-
sponding to hormonal signals [77], in mammalian cells 
responding to cytokine signaling and wounds [81], in 
worms responding to starvation during larval develop-
ment [82], and in plants responding to environmental 
stressors, including drought and temperature changes 
[70,74,76]. In some cases, the molecular players are si-
milar. For example, in flies and human cells, the nuclear 
pore protein Nup98 has been implicated in memory, and 
a homologous protein (Nup100) is essential for memory 
in yeast. In these organisms, Nup98 does not localize 
exclusively at the NPC, so this may not reflect interac-
tion with the NPC [84]. In flies, Nup98 is not only in-
volved in gene activation [83,84], but it is also required 
for enhancer–promoter looping and epigenetic tran-
scriptional memory at genes induced by the hormone 
ecdysone [68]. Likewise, H3K4 methylation is asso-
ciated with both interferon gamma (IFN-γ) memory in 
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human cells [11,85] and heat shock memory in plants 
[86,87]. Thus, evolutionarily distant organisms utilize 
mechanistically similar, mitotically heritable mechan-
isms to integrate previous environmental stimuli into 
future responses.

Molecular mechanisms of epigenetic 
transcriptional memory
Memory is associated with H3K4me2, but not 
H3K4me3. This is due to the recruitment of an alter-
native form of the H4K4 methyltransferase Set1/ 
COMPASS lacking the Spp1 subunit during memory 
(Figure 1d) [55]. H3K4me2 has a critical role in epige-
netic transcriptional memory. This mark is associated 
with memory in yeast, humans, and plants. Inactivation 
of Nup100 in yeast, which causes loss of interaction with 

the NPC and consequently H3K4 methylation, or 
Nup98 in human cells leads to loss of both H3K4me2 
and poised RNAPII [11,14,55,71]. Likewise, mutation of 
H3K4 to alanine or arginine, inactivation of either the 
writer of H3K4 methylation (Set1/COMPASS) or the 
putative reader of H3K4me2 (the SET3C complex), 
leads to loss of both H3K4 methylation and RNAPII 
[55]. Furthermore, conditional genetic experiments de-
monstrate that H3K4me2 is essential for recruitment of 
RNAPII during memory [14]. A similar relationship 
between H3K4 methylation and RNAPII was also seen 
in mouse embryonic stem cells, where depletion of a 
core COMPASS subunit resulted in depletion of H3K4 
methylation and a loss of paused RNAPII [11,55,71], 
which negatively impacted gene expression [88]. How-
ever, this is not always true; inactivation of the sole 

Figure 2  
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Epigenetic transcriptional memory in yeast and mammalian cells. (a) Yeast INO1 memory. Upon primary exposure to a stimulus, the Ino2/4 activators 
recruit HAT complexes to acetylate histones and thus increase DNA accessibility to TFs and the transcriptional machinery. This leads to binding of 
Put3 and Cfb1 to DNA zip codes (ZIP) and interaction with the NPC. Upon repression, transcriptional memory is established. The Sfl1/Hms2 TF binds 
to the MRS DNA zip code, leading to interaction with the NPC. This interaction stimulates RNAPII-independent H3K4 dimethylation, H2A.Z 
incorporation, and binding of poised RNAPII [14,55,71]. If the cells are starved for inositol again, INO1 is more rapidly induced. Eventually, memory is 
lost and the gene relocalizes to the nucleoplasm and the chromatin returns to a repressed state. (b) Transcriptional memory in mammals. Following 
removal of an inducing stimulus, the activated gene is repressed, epigenetic transcriptional memory is established through binding of specific TFs. 
Memory is associated with maintenance of accessible chromatin and/or through read–write systems to promote H3K4 methylation. Memory can 
require interaction with nuclear pore proteins, recruitment of a form of mediator with Cdk8, and poised RNAPII. Once memory is lost, chromatin returns 
to a repressed hypoacetylated state [62]. INO1; Inositol requiring 1.  
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H3K4 methyltransferase (Set1/COMPASS) in yeast does 
not strongly affect RNAPII activity and has no apparent 
effect on RNAPII association with active INO1 [55].

The relationship between H3K4 methylation and the 
NPC is complex. Loss of Sfl1, the TF that mediates 
interaction with the NPC, or the NPC protein Nup100 
(Figure 2a), leads to loss of H3K4me2 during memory 
[11,14,55]. However, loss of H3K4 methylation results in 
loss of both H2A.Z and Sfl1, the TF that mediates in-
teraction with the NPC [14]. This suggests that H3K4 
methylation and the interaction with the NPC represent 
a positive-feedback loop — interaction with the NPC 
promotes H3K4 methylation and incorporation of 
H2A.Z, which promotes binding of the TF that mediates 
interaction with the NPC.

Could H3K4me2 be the source of inherited information 
during memory? In certain cases, H3K4 methylation can 
be inherited. H3K4 methylation can persist through 
mitosis in yeast [89] and is required to perpetuate tran-
scription through multiple cell divisions from a trans-
planted nucleus in frogs [90] and the transgenerational 
effects from a high-fat diet in worms [3]. However, when 
an active gene that lacks memory is repressed, H3K4 
methylation is quickly lost [55]. This suggests that the 
stability and heritability of H3K4 methylation are con-
text-dependent.

The H3K4me2 associated with epigenetic transcrip-
tional memory is the product of a pathway that is me-
chanistically distinct from H3K4 methylation associated 
with active transcription. H3K4 methylation associated 
with transcription is dependent on RNA polymerase II 
(RNAPII); Set1/COMPASS is recruited to active 
RNAPII via the Paf1 complex [14], which binds to the 
phosphorylated carboxy-terminal domain of RNAPII. 
This type of H3K4 methylation does not require nuclear 
pore proteins or reader complex SET3C. However, 
H3K4me2 associated with INO1 memory requires not 
only Set1/COMPASS and the Paf1 complex, but also 
Nup100 and SET3C. In fact, one subunit of the Paf1 
complex (Leo1) is required for H3K4me2 during 
memory but does not impact H3K4 methylation at active 
genes [14]. Finally, H3K4 dimethylation during memory 
does not require RNAPII, which suggests that memory 
utilizes an RNAPII-independent, Nup100-dependent 
mechanism to recruit Spp1- Set1/COMPASS. And un-
like the H3K4 methylation associated with active tran-
scription, H3K4me2 associated with memory is 
mitotically heritable.

Can the H3K4me2 mark itself be inherited? INO1 
memory requires a specific cis-acting DNA element 
DNA zip code called the Memory Recruitment 
Sequence (MRS) that recruits the TFs Sfl1 and Hms2 to 
mediate interaction with the NPC via Nup100 [62,71]. 

Conditional inactivation of Sfl1 disrupts most aspects of 
transcriptional memory (i.e. localization to the nuclear 
periphery and RNAPII recruitment). However, after 
memory has been established, inactivation of Sfl1 has no 
effect on H3K4me2, which persists and is reintroduced 
for up to 4 generations after loss of Sfl1 [14]. Thus, once 
established, H3K4me2 does not require interaction with 
the NPC to be inherited. This mechanism of inheritance 
does require the putative reader protein SET3C [55], 
suggesting that the recognition of H3K4me2 may func-
tion as part of a read–write mechanism of chromatin 
replication where Spp1- Set1/COMPASS is recruited by 
SET3C following DNA replication to maintain H3K4 
dimethylation.

Mammalian cells exhibit transcriptional memory in re-
sponse to cytokine signaling. Upon viral, bacterial, or 
parasitic infection, the cytokine interferon gamma (IFN- 
γ) is produced. When cells (i.e. macrophages and fibro-
blasts) previously exposed to IFN-γ are restimulated, 
they exhibit transcriptional memory, resulting in faster 
and stronger expression of certain target genes [12]. 
Furthermore, this transcriptional memory can be in-
herited over multiple generations [11,13], confers more 
antiviral protection to the cells, and results in increased 
histone H3.3 and H3K36me3 marks on primed genes, 
which were associated with faster recruitment of 
RNAPII, TFs, and chromatin factors (Figure 2b) [12,13]. 
Some primed genes in yeast and human cells interact 
with both nucleoporins and poised RNAPII and exhibit 
H3K4me2 [11,62,85]; however, poised RNAPII was not 
seen in mouse fibroblasts nor at all genes that exhibit 
memory in HeLa cells (Figure 2b) [12,13].

Genes with strong IFN-γ-induced transcriptional 
memory are often located within clusters and their 
memory is constrained by Cohesin, which mediates 
DNA looping, sister chromatid cohesion, and homo-
logous recombination [13]. These genes were also found 
to have enhanced chromatin accessibility at target gene 
promoters in primed cells that correlated with faster 
targeting of TFs STAT1 and Interferon Regulatory 
Factor 1 at several guanylate-binding protein gene pro-
moters in primed HeLa cells [91]. In fact, Signal 
Transducer and Activator of Transcription 1 (STAT1) is 
required for establishment but not maintenance of IFN- 
γ-induced transcriptional memory in human cells [91]
(Figure 3).

Another example of transcriptional epigenetic memory 
in mammals is the inflammatory response. During the 
first experience of wound repair or inflammation stimu-
lated by an acute stimulus called imiquimod, epidermal 
stem cells (EpdSCs) develop an epigenetic memory to 
promote future wound healing via faster gene reactiva-
tion upon subsequent exposures. In forming memory in 
these cells, lncRNAs are transcribed to interact with 
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Mediator and recruit histone remodelers similar to in-
flammatory TFs, which are required to make chromatin 
regions near inflammation-induced genes accessible for 
transcription [15]. The accessibility and inflammation- 
associated histone modifications (mainly H3K4me1, but 
in some instances H3K27ac) remain at these regions or 

‘memory domains’ long after the inflammation and in-
creased transcription levels have subsided [10]. In the 
case of EpdSCs, a cell-type and stimulus-specific TF, 
STAT3, and stress-response Activator Protein 1 (a pro-
tein complex comprising FBJ Murine Osteosarcoma viral 
oncogene homolog (FOS) and JUN proteins) are re-
quired for inflammation-induced memory. STAT3 is 
required for allowing FOS–JUN to access, bind, and 
establish memory domains. While STAT3 and FOS are 
reduced after inflammation subsides, JUN — alongside 
Activating Transcription Factor 3 and p63— remains 
bound to memory domains to keep chromatin accessible 
and primed [10]. Upon subsequent exposures, FOS can 
be quickly recruited to JUN-bound memory domains for 
rapid reactivation and enhanced expression of in-
flammation-associated genes in a STAT3-independent 
fashion [10]. Thus, similar to other forms of transcrip-
tional memory, inflammation memory involves an in-
terplay between TFs and histone modifications to 
regulate transcription in cis.

Concluding remarks
Cells utilize epigenetic transcriptional regulation to both 
stabilize transcriptional states and to remember recent 
experiences. During development, differentiation is 
achieved by establishment and maintenance of very 
stable transcriptional programs through a combination of 
mechanisms involving DNA methylation, lncRNA- 
mediated regulation, and histone modifications. These 
epigenetic mechanisms also mediate transcriptional 
changes over intermediate timescales. Here, we have 
focused on epigenetic transcriptional memory, which has 
been observed in diverse eukaryotic organisms in re-
sponse to diverse stimuli. Various models of transcrip-
tional memory are beginning to reveal new insights into 
how TFs, histone modifications, and chromosome 
folding can impact future transcription and how this 
state can be inherited. Depending on the organism and 
stimuli, distinct mechanisms are used to mediate 
memory. Thus, while it is unlikely that all forms of 
epigenetic transcriptional memory utilize the same me-
chanism, nonetheless, this diversity strongly supports 
the idea that remembering previous experiences pro-
vides a strong fitness advantage.
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Figure 3  

Current Opinion in Genetics and Development

Inflammation memory. Upon wound repair or inflammation caused by an 
acute stimulus (lightning bolt), EpdSCs mount a transcriptional response 
mediated by stress-response-associated TFs FOS (light blue) and JUN 
(navy) and stimulus-specific TFs such as STAT3 (red). These three 
factors are essential in establishing memory following inflammation, but 
STAT3 functions upstream of FOS–JUN. During inflammation, 
chromatin changes, including H3K4me1 (orange circles) and H3K27ac 
(light-yellow circles), are associated with regions that will exhibit 
memory. Once the inflammation has resolved, memory domains retain 
some of the H3K27ac but more of the H3K4me1; furthermore, these 
regions retain JUN as well as other homeostatic TFs (yellow), which are 
sufficient for their maintenance. Upon subsequent exposure to similar 
stimuli, FOS is quickly re-recruited to the memory domains in a STAT3- 
independent manner. FBJ; Murine Osteosarcoma viral oncogene 
homolog. 
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