Research and Publications

Submitted

182. Das, P.; Woods, E.; Ly, J.; Olding, J.N.; Presley, K.; Romanoff, B.; Grusenmeyer, T.;Weiss, E.A., Kalow, J. Chemoselective nickel-catalyzed coupling through substrate photoexcitation, submitted.

181. Utama, I.,et al. Chemomechanical modification of quantum emission in monolayer WSe2submitted.

2022

179.Chang, W.-J.; Irgen-Gioro, S.; Vong, A.F.; Kim, H.; Mara, M.; Chen, L.X.; Weiss, E.A. Enhancement of Emission from Lanthanide Dopants in Perovskite Nanocrystals through a Temperature-Dependent Phase Transformation of the Perovskite LatticeJ. Phys. Chem. C, 126, 15247–15253 (2022).

Abstract Image

178. Arcudi, F.; Dordevik, L.; Schweitzer, N.; Stupp, S.I.; Weiss, E.A. Selective Catalytic Conversion of Acetylene to Ethylene Powered by Water and Visible LightNature Chem., 14, 1007-1012 (2022).

177. Vasileiadou, E.; Jiang, X.; Kepenekian, M.; Even, J.; De Siena, M.; Friedrich, D.; Spanopoulos, I.; Tu, Q.; Tajuddin, I.; Weiss, E.A.; Kanatzidis, M. Thick-Layer Lead Iodide Perovskites with Bifunctional Organic Spacers Allylammonium and Iodopropylammonium Exhibiting Trap-State Emission, J. Am. Chem. Soc. 144, 14, 6390–6409 (2022).

Figure 1

 

176. Eckdahl, C.T.; Ou, C.; Padgaonkar, S.; Hersam, M.C.; Weiss, E.A.; Kalow, J.A. Back electron transfer rates determine the photoreactivity of donor–acceptor stilbene complexes in a macrocyclic host, Org. Biomolec. Chem., 20, 6201-6210 (2022).

image file: d2ob00472k-f1.tif

175. Westmoreland, D.E.; López-Arteaga, R.; Kantt, L.; Wasielewski, M.R.; Weiss, E.A. Dynamic Tuning of the Bandgap of CdSe Quantum Dots through Redox-Active Exciton-Delocalizing N-Heterocyclic Carbene Ligands, J. Am. Chem. Soc. 144, 10, 4300–4304 (2022).

Figure 1

174. Park, J.-E.; López-Arteaga, R.; Sample, A.; Cherqui, C.; Spanopoulos, I.; Guan, J.; Kanatzidis, M.; Schatz, G.C.; Weiss, E.A.; Odom, T.W. Polariton Dynamics in Two-Dimensional Ruddlesden-Popper Perovskites Strongly Coupled with Plasmonic Lattices, ACS Nano 16, 3, 3917–3925 (2022).

173. Choo, P.; Arenas-Esteban, D.; Jung, I.; Chang, W.-J.; Weiss, E.A.; Bals, S.; Odom, T.W. Investigating Reaction Intermediates During the Seedless Growth of Gold Nanostars using Electron TomographyACS Nano 16, 3, 4408–4414 (2022).

Figure 1

172. Jiang, Y.; López-Arteaga, R.; Weiss. E.A. Quantum Dots Photocatalyze Intermolecular [2+2] Cycloadditions of Aromatic Alkenes Adsorbed to their Surfaces via van der Waals Interactions, J. Am. Chem. Soc., 144, 9, 3782–3786 (2022).

171.Chen, X.; Xie, H.; Lorenzo, E.; Zeman, C. J.; Qi, Y.; Syed, Z.; Stone, A.E.B.S.; Wang, Y.; Goswami, S.; Li, P.; Islamoglu, T.; Weiss, E.A.; Hupp, J.T.; Schatz, G.C.; Wasielewski, M.R.; Farha, O. Direct Observation of Modulated Radical Spin States in Metal–Organic Frameworks by Controlled FlexibilityJ. Am Chem. Soc., 144, 2685–2693 (2022).

Abstract Image

170. Stone, A.E.B.; Hupp, J.T.; Weiss, E.A. Encapsulating QDs in the MOF ZIF-8 Enhances Their Photoluminescence Quantum Yields in the Solid StateChem. Mater. 34, 1921-1929 (2022).

Abstract Image

2021

169. Yang, M.; Xiong, Q.; Kodaimati, M.S.; Jiang, X.; Schweitzer, N.M.; Schatz, G.C.; Weiss, E.A. Dynamic Control of Photocatalytic Proton Reduction through Mechanical Actuation of a Hydrogel Host MatrixJ. Phys. Chem. Lett., 12, 12135–12141 (2021).

Abstract Image

168. Vong, A.F.; Irgen-Gioro, S.; Wu, Y.; Weiss, E.A. Origin of Low Temperature Trion Emission in CdSe NanoplateletsNano Lett., 21, 10040–10046 (2021).

Abstract Image

167. Xu, D.D.; Wahl, C.B.; Du, J.S.; Irgen-Gioro, S.; Weiss, E.A.; Mirkin, C.A. Site-Isolated Upconversion Nanoparticle Arrays Synthesized in Polyol NanoreactorsJ. Phys. Chem. C., 125, 26125–26131 (2021).

Abstract Image

166. Chang, W.J.; Irgen-Gioro, S.; Padgaonkar, S.; López-Arteaga, R.; Weiss, E.A. Photo-redox Mediated Sensitization of Lanthanide Dopants by Perovskite NanocrystalsJ. Phys. Chem. C, 125, 25634–25642 (2021).

Abstract Image

165. Arcudi, F.; Dordevic, L.; Nagasing, B.; Stupp, S.I.; Weiss, E.A. Quantum Dot-Sensitized Photoreduction of CO2 in Water with Turnover Number >80,000J. Am. Chem. Soc., 143, 18131–18138 (2021).

Abstract Image

164. Amsterdam, S.H.; Stanev, T.K.; Wang, L.; Zhou, Q.; Irgen-Gioro, S.; Padgaonkar, S.; Murthy, A.A.; Sangwan, V.K.; Dravid, V.P.; Weiss, E.A.; Darancet, P.; Chan, M.K.Y.; Hersam, M.C.; Stern, N.P.; Marks, T.J. Mechanistic Investigation of MoS2 Defect Photoluminescence Quenching by Adsorbed MetallophthalocyaninesJ. Am. Chem. Soc., 143, 17153–17161 (2021).

Abstract Image

163. Ricci, F.; Marougail, V.; Varnavski, O.; Wu, Y.; Padgaonkar, S.; Irgen-Gioro, S.; Weiss, E.A.; Goodson III, T. Enhanced Exciton Quantum Coherent Properties in Single CsPbBr3 Perovskite Quantum Dots using Femtosecond Two-Photon Near-Field Scanning Optical Microscopy at Room TemperatureACS Nano, 15, 12955–12965 (2021).

Abstract Image

162.  Padgaonkar, S.; Brown, P.; Jeong, Y.; Cherqui, C.; Avanaki, K.N.; López-Arteaga, R.; Irgen-Gioro, S.; Wu, Y.; Sangwan, V.; Schatz, G.C.; Hersam, M.C.; Weiss, E.A.  Mechanism of Long-Range Energy Transfer from Quantum Dots to Black PhosphorusJ. Phys. Chem. C, 125, 15458–15464 (2021).

Abstract Image

161. Irgen-Gioro, S.; Wu, Y.; López-Arteaga, R.; Padgaonkar, S.; Olding, J.N.; Weiss, E.A. Evidence for Two Timescale-Specific Blinking Mechanisms in Room-Temperature Single Nanoplatelets, J. Phys. Chem C, 125, 13485-13492 (2021).

Abstract Image

160. Caravana, A.C.; Nagasing, B.; Dhanju, S.; Reynolds, R.; Weiss, E.A.; Thomson, R.J. Electrocatalytic and Photocatalytic Oxidative Coupling of Ketones via Silyl Bis-enol Ethers, J. Org. Chem., 86, 6600-6611 (2021).

Abstract Image

159. Weiss, E.A.; Vela, J. Periodic TableTalks: The Elements Never Go Out of Style, Inorg. Chem., 60, 6957-6963 (2021).

158. Spanopoulos, I.; Hadar, I.; Ke, W.; Guo, P.; Mozur, E.; Morgan, E.; Wang, S.; Zheng, D.; Padgaonkar, S.; Manjunatha Reddy, G.N.; Weiss, E.A.; Hersam, M.C.; Seshadri, R.; Schaller, R.; Kanatzidis, M.G. Tunable Broad Light Emission from 3D “Hollow” Bromide Perovskites through Defect Engineering, J. Am. Chem. Soc., 143, 7069-7080 (2021).

157. Jiang, Y.; Wang, M.; Wu, Y.; López-Arteaga, R.; Rogers, C.R.; Weiss, E.A. Chemo- and Stereoselective Intermolecular [2+2] Photocycloaddition of Conjugated Dienes using Colloidal Nanocrystal Photocatalysts, Chem Catal., 1, 106-116 (2021).

156. Padgaonkar, S.; Eckdahl, C.T..; Sowa, J.K.; López-Arteaga, R.; Westmoreland, D.E.; Woods, E.F.; Irgen-Gioro, S.; Nagasing, B.E.;Seideman, T.; Hersam, M.C.; Kalow, J.A.; Weiss, E.A. Light-Triggered Switching of Quantum Dot Photoluminescence through Excited-State Electron Transfer to Surface-Bound Photochromic MoleculesNano Lett., 21, 854-860 (2021).

155. Amsterdam, S.H.; LaMountain, T.; Stanev, T.K.; Sangwan, V.K.; Lopez-Arteaga, R.; Padgaonkar, S.; Watanabe, K.;Taniguchi, T.; Weiss, E.A.; Marks, T.J.; Hersam, M.C.; Stern, N.P. Tailoring the Optical Response of Pentacene Thin Films via Templated Growth on Hexagonal Boron Nitride, J. Phys. Chem. Lett., 12, 26-31 (2021).

2020

154. Irgen-Gioro, S.; Yang, M.; Padgaonkar, S.; Chang, W. J.; Zhang, Z.; Nagasing, B.; Jiang, Y.; Weiss, E.A. Charge and energy transfer in the context of colloidal nanocrystals, Chem. Phys. Rev., 1, 011305 (2020).

153. Beard, M.C.; Peng, X.; Hens, Z.; Weiss, E.A. Introduction to Special Issue: Colloidal Quantum DotsJ. Chem. Phys. 153, 240401 (2020).

152. Jiang, Y.; Weiss, E.A. Colloidal Quantum Dots as Photocatalysts for Triplet Excited State Reactions of Organic MoleculesJ. Am. Chem. Soc., 142, 15219-15229 (2020).

151. Jones, L.; Mosquera, M.; Jiang, Y.; Weiss, E.A.; Schatz, G.C.; Ratner, M.A. Thermodynamics and Mechanism of a Photocatalyzed Stereoselective [2+2] Cycloaddition on a CdSe Quantum DotJ. Am. Chem. Soc., 142, 15488-15495 (2020).

150. Chang, W.J.; Park, K-Y.; Zhu, Y.; Wolverton, C.; Hersam, M.C.; Weiss, E.A. n-Doping of Quantum Dots by Lithium Ion Intercalation, ACS Appl. Mater. Interf., 12, 36523-36529 (2020).

149. Sowa, J.; Weiss, E.A., Seideman, T. Photoisomerisation-coupled Electron Transfer, J. Chem. Phys., 53, 034301 (2020).

148. Perez, K.S.; Rogers, C.R.; Weiss, E.A. Quantum Dot-Catalyzed Photoreductive Removal of Sulfonyl-Based Protecting Groups, Angew. Chemie, Intl. Ed., 59, 14091-14095 (2020).

image

147. Garci, A.; Beldjoudi, Y.; Kodaimati, M.S.; Hornick, J.; Nguyen, M.; Cetin, M.M.; Stern, C.; Roy, I.; Weiss, E.A.; Stoddart, J.F. Mechanical-Bond-Induced Exciplex Fluorescence in an Anthracene-Based Homo[2]Catenane, J. Am. Chem. Soc., 142, 7956–7967 (2020).

Abstract Image

146. Li, S.; Zhong, C.; Henning, A.; Sangwan, V.; Liu, X.; Rahn, M.; Wells, S.; Park, H. Y.; Luxa, J.; Sofer, Z.; Facchetti, A.; Marks, T.J.; Lauhon, L.J.; Weiss, E.A; Hersam, M.C. Molecular-Scale Characterization of Photoinduced Charge Separation in Mixed-Dimensional InSe-Organic van der Waals Heterostructures, ACS Nano, 14, 3509-3518 (2020).

Molecular-Scale Characterization of Photoinduced Charge Separation in Mixed-Dimensional InSe-Organic van der Waals Heterostructures

145. Westmoreland, D.E.; López-Arteaga, R.; Weiss, E.A. N-Heterocyclic Carbenes as Reversible Exciton-Delocalizing Ligands for Photoluminescent Quantum Dots, J. Am. Chem. Soc., 142, 5, 2690-2696 (2020).

N-Heterocyclic Carbenes as Reversible Exciton-Delocalizing Ligands for Photoluminescent Quantum Dots

144. Padgaonkar, S.; Olding, J.; Lauhon, L.; Hersam, M.C.; Weiss, E.A. Emergent Optoelectronic Properties of Mixed-Dimensional Heterojunctions, Acc. Chem. Res., 53, 4, 763-772 (2020).

Emergent Optoelectronic Properties of Mixed-Dimensional Heterojunctions

143. McClelland, K.P.; Clemons, T.; Stupp, S.I.; Weiss, E.A. Semiconductor Quantum Dots Are Efficient and Recyclable Photocatalysts for Aqueous PET-RAFT Polymerization, ACS Macro Lett., 9, 1, 7-13 (2020).

Semiconductor Quantum Dots Are Efficient and Recyclable Photocatalysts for Aqueous PET-RAFT Polymerization

142. Zhang, Z.; Rogers, C.R.; Weiss, E.A. Energy Transfer from CdS QDs to a Photogenerated Pd Complex Enhances the Rate and Selectivity of a Pd-Photocatalyzed Heck Reaction, J. Am. Chem. Soc. 1421, 495-501 (2020).

Energy Transfer from CdS QDs to a Photogenerated Pd Complex Enhances the Rate and Selectivity of a Pd-Photocatalyzed Heck Reaction

2019

141. Westmoreland, D.E.; McClelland, K.P.; Perez, K.A.; Schwabacher, J.C.; Zhang, Z.; Weiss, E.A. Properties of Quantum Dots Coupled to Plasmons and Optical Cavities, J. Chem. Phys., 151, 210901 (2019).

140. Chen, H.; McClain, R.; He, J.; Zhang, C.; Olding,J.N.; dos Reis, R.; Bao, J.-K.; Hadar, I.; Spanopoulos, I.; Malliakas, C.D.; Klein, R.A.; He, Y.; Chung, D.Y.; Wai-Kwong Kwok, W.-K.; Weiss, E.A.; Dravid, V.P.; Wolverton, C.; Kanatzidis, M.G. Antiferromagnetic Semiconductor BaFMn0.5Te with Unique Mn Ordering and Red Photoluminescence, J. Am. Chem. Soc., 141, 17421-17430 (2019).

Antiferromagnetic Semiconductor BaFMn0.5Te with Unique Mn Ordering and Red Photoluminescence

139. Olding, J.; Henning, A.; Dong, J.; Zhou, Q.; Moody, M.; Smeets, P.; Darancet, P.; Weiss, E.A.; Lauhon, L.J. Charge separation in epitaxial SnS/MoS2 vertical heterojunctions grown by low-temperature pulsed MOCVD, ACS Appl. Mater. Interf., 11, 40543-40550 (2019).

Charge separation in epitaxial SnS/MoS2 vertical heterojunctions grown by low-temperature pulsed MOCVD

138. Zhou, Q.; Cho, Y.; Yang, S.; Weiss, E.A.; Berkelbach, T.; Darancet, P. Large Band Edge Tunability in Colloidal Nanoplatelets, Nano Lett., 19, 7124-7129 (2019).

Large Band Edge Tunability in Colloidal Nanoplatelets

137. Arcudi, F.; Westmoreland, D.E.; Weiss, E.A. Colloidally Stable CdS Quantum Dots in Water with Electrostatically Stabilized Weak-Binding, Sulfur-Free Ligands, Chem. Eur. J., 25, 14469-14474 (2019).

136. Kodaimati, M.S.; Kedem, O.; Schatz, G.C.; Weiss, E.A. Empirical Mappings of the Frequency Response of an Electron Ratchet to the Characteristics of the Polymer Transport Layer, J. Phys. Chem. C, 123, 22050-22057 (2019).

Empirical Mappings of the Frequency Response of an Electron Ratchet to the Characteristics of the Polymer Transport Layer

135. Jiang, Y.; Wang, C.; Rogers, C.R.; Kodaimati, M.S.; Weiss, E.A. Regio- and diastereoselective intermolecular [2+2] cycloadditions photocatalysed by quantum dots, Nature Chemistry, 11, 1034-1040 (2019).

Regio-and diastereoselective intermolecular [2+2] cylcoadditions photocatalysed by quantum dots

134. Schwabacher, J.C.; Kodaimati, M.S.; Weiss, E.A. Origin of the pH-Dependence of Emission of Aqueous Dihydrolipoic Acid-Capped PbS Quantum Dots, J. Phys. Chem. C, 123, 17574-17579 (2019).

Origin of the pH-Dependence of Emission of Aqueous Dihydrolipoic Acid-Capped PbS Quantum Dots

133. Padgaonkar, S.; Amsterdan, S.; Bergeron, H.; Su, K.; Marks, T.J Hersam, M.A.; Weiss, E.A. Molecular Orientation-Dependent Interfacial Charge Transfer in Phthalocyanine/MoS2 Mixed-Dimensional Heterojunctions, J. Phys. Chem. C, ASAP, DOI: 10.1021/acs.jpcc.9b04063 (2019).

Molecular Orientation-Dependent Interfacial Charge Transfer in Phthalocyanine/MoS<sub>2</sub> Mixed-Dimensional Heterojunctions

132. Westmoreland, D.E.; Nap, R.; Arcudi, F.; Szleifer, I.; Weiss, E.A. pH-Dependent Structure of Water-Exposed Surfaces of CdSe Quantum DotsChem. Commun., 55, 5435-5438 (2019).

pH-Dependent Structure of Water-Exposed Surfaces of CdSe Quantum Dots

131. Kedem, O.; Weiss, E.A. Density-Mediated Transport in a Multi-Particle, Multi-Dimensional Flashing Ratchet, J. Phys. Chem. C, 123, 6913–6921 (2019).

Density-Mediated Transport in a Multi-Particle, Multi-Dimensional Flashing Ratchet

130. Lian, S.; Christensen, J.A.; Kodaimati, M.S.; Rogers, C.R.; Wasielewski, M.R.; Weiss, E.A. Oxidation of a Molecule by the Biexcitonic State of a CdS Quantum Dot, J. Phys. Chem. C, 123, 5923–5930 (2019).

Oxidation of a Molecule by the Biexcitonic State of a CdS Quantum Dot

129. Zhong, C.; Sangwan, V.; Kung, J.; Luxa, J.; Sofer, Z.; Hersam, M.A.; Weiss, E.A. Hot Carrier and Surface Recombination Dynamics in Layered InSe Crystals, J. Phys. Chem. Lett., 10, 493-499 (2019).

Hot Carrier and Surface Recombination Dynamics in Layered InSe Crystals

128. Wang, C.; Kodaimati, M.S.; Lian, S.; Weiss, E.A. Systematic Control of the Rate of Singlet Fission within 6,13-Diphenylpentacene Aggregates Adsorbed to PbS Quantum Dots, Farad. Disc., 216, 162 – 173 (2019).

Systematic Control of the Rate of Singlet Fission within 6,13-Diphenylpentacene Aggregates Adsorbed to PbS Quantum Dots

2018

127. McClelland, K.P.; Weiss, E.A. Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde or C-C Coupled Products by Visible-Light-Absorbing Quantum Dots, ACS Applied Energy Mater., 2, 92-96 (2018).

 

Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde or C-C Coupled Products by Visible-Light-Absorbing Quantum Dots

126. Kodaimati, M.; Lian, S.; Jiang, Y.; Schatz, G.C.; Weiss, E.A. Energy-Transfer Enhanced Photocatalytic Reduction of Protons within Quantum Dot Light Harvesting–Catalyst Assemblies, Proc. Natl. Acad. Sci., 115, 8290-8295 (2018).

Energy-Transfer Enhanced Photocatalytic Reduction of Protons within Quantum Dot Light Harvesting–Catalyst Assemblies

125. Moody, M.J.; Henning, A.; Jurca, T.; Shang, J.Y.; Bergeron, B.; Balla, I.; Olding, J.N.; A. Weiss, E.A.; Hersam, M.C.; Lohr, T.L.; Marks, T.J.; Lauhon, L.J. Atomic Layer Deposition of Molybdenum Oxides with Tunable Stoichiometry Enables Controllable Doping of MoS2, Chem. Mater., 30, 3628–3632 (2018).

https://pubs.acs.org/na101/home/literatum/publisher/achs/journals/content/cmatex/2018/cmatex.2018.30.issue-11/acs.chemmater.8b01171/20180606/images/large/cm-2018-011714_0005.jpeg

124. Zhong, C.; Sangwan, V.; Wang, C.; Bergeron, H.; Hersam, M.C.; Weiss, E.A. Mechanisms of Ultrafast Charge Separation in a PTB7/Monolayer MoS2 van der Waals Heterojunction, J. Phys. Chem. Lett. 9, 2484–2491 (2018).

Mechanisms of Ultrafast Charge Separation in a PTB7/Monolayer MoS2 van der Waals Heterojunction

123. Perez, K.A.; Lian, S.; Kodaimati, M.S.; He, C.; Weiss, E.A. Mechanisms of Defect Passivation by Fluorinated Alkylthiolates on PbS Quantum Dots, J. Phys. Chem. C, 122, 13911–13919 (2018).

Mechanisms of Defect Passivation by Fluorinated Alkylthiolates on PbS Quantum Dots

122. Kodaimati, M.; McClelland, K.; He, C.; Lian, S.; Jiang, Y.; Zhang, Z.; Weiss, E.A. Viewpoint: Challenges in Colloidal Photocatalysis, and Some Strategies for Addressing Them, Inorg. Chem., 57, 3659–3670 (2018).

Viewpoint: Challenges in Colloidal Photocatalysis, and Some Strategies for Addressing Them

121. Lian, S.; Kodaimati, M.S.; Weiss, E.A. Photocatalytically Active Superstructures of Quantum Dots and Iron Porphyrins for Reduction of CO2 to CO in Water, ACS Nano, 12, 568–575 (2018).

Photocatalytically Active Superstructures of Quantum Dots and Iron Porphyrins for Reduction of CO2 to CO in Water

2017

120. He, C.; Zhang, Z.; Wang, C.; Jiang, Y.; Weiss, E.A. Reversible Modulation of the Electrostatic Potential of a Colloidal Quantum Dot through the Protonation Equilibrium of its Ligands, J. Phys. Chem. Lett., 8, 4981–4987 (2017).

Reversible Modulation of the Electrostatic Potential of a Colloidal Quantum Dot through the Protonation Equilibrium of its Ligands

119. Dolzhnikov, D.; Wang, C.; Xu, Yadong, Kanatzidis, M.; Weiss, E.A. Ligand-Free, Quantum-Confined Cs2SnI6 Perovskite Nanocrystals, Chem. Mater., 29, 7901–7907 (2017).

Ligand-Free, Quantum-Confined Cs2SnI6 Perovskite Nanocrystals

118. Kedem, O.; Lau, B.; Weiss, E.A. How to Drive a Flashing Electron Ratchet to Maximize Current, Nano Lett., 17, 5848–5854 (2017).

How to Drive a Flashing Electron Ratchet to Maximize Current

117. Wang, C.; Weiss, E.A. Accelerating FRET between Near-Infrared-Emitting Quantum Dots Using a Molecular J-aggregate as an Exciton Bridge, Nano Lett., 17, 5666-5671 (2017).

Accelerating FRET between Near-Infrared-Emitting Quantum Dots Using a Molecular J-aggregate as an Exciton Bridge

116. Kedem, O.; Lau, B.; Weiss, E.A. Mechanisms of Symmetry Breaking in a Multidimensional Flashing Particle Ratchet, ACS Nano, 11, 7148-7155 (2017).

Mechanisms of Symmetry Breaking in a Multidimensional Flashing Particle Ratchet

115. Kedem, O.; Lau, B.; Ratner, M.A.; Weiss, E.A. A Light-Responsive Organic Electron Flashing Ratchet, Proc. Natl. Acad. Sci., 114, 8698-8703 (2017).

A Light-Responsive Organic Electron Flashing Ratchet

114. Lau, B.; Kedem, O.; Kodaimati, M.; Ratner, M.A.; Weiss, E.A. A Silicon Ratchet to Produce Power from Below-bandgap Photons, Adv. Energy Mater.,7, 1701000/1-1701000/8 (2017).

A Silicon Ratchet to Produce Power from Below-bandgap Photons

113. He, C.; Nguyen, T.D.; Edme, K.; Olvera de la Cruz, M.; Weiss, E.A. Non-covalent Control of the Electrostatic Potential of Quantum Dots through the Formation of Interfacial Ion Pairs, J. Am. Chem. Soc., 139, 10126–10132 (2017).

Non-covalent Control of the Electrostatic Potential of Quantum Dots through the Formation of Interfacial Ion Pairs

112. Lian, S.; Kodaimati, M.S.; Dolzhnikov, D.S.; Calzada, R.; Weiss, E.A. Powering a CO2 Reduction Catalyst with Visible Light through Multiple Sub-picosecond Electron Transfers from a Quantum Dot, J. Am. Chem. Soc., 139, 8931–8938 (2017).

Powering a CO2 Reduction Catalyst with Visible Light through Multiple Sub-picosecond Electron Transfers from a Quantum Dot

111. Kodaimati, M.S.; Wang, C.; Chapman, C.; Schatz, G.C.; Weiss, E.A. The Distance-Dependence of Inter-Particle Energy Transfer in the Near-Infrared within Electrostatic Assemblies of PbS Quantum Dots, ACS Nano, 11, 5041-5050 (2017).

The Distance-Dependence of Inter-Particle Energy Transfer in the Near-Infrared within Electrostatic Assemblies of PbS Quantum Dots

110. Weiss, E.A. Designing the Surfaces of Semiconductor Quantum Dots for Colloidal Photocatalysis, ACS Energy Lett., 2, 1005-1013 (2017).

Designing the Surfaces of Semiconductor Quantum Dots for Colloidal Photocatalysis

109. Zhang, Z.; Edme, K.; Lian, S.; Weiss, E.A. Enhancing the Rate of Quantum Dot-Photocatalyzed Carbon-Carbon Coupling by Tuning the Composition of the Dot’s Ligand Shell, J. Am. Chem. Soc., 139, 4246-4249 (2017). **Highlighted by Science 12 May 2017: Vol. 356, pp. 595-596**

Enhancing the Rate of Quantum Dot-Photocatalyzed Carbon-Carbon Coupling by Tuning the Composition of the Dot’s Ligand Shell

108. Lau, B.; Kedem, O.; Schwabacher, J.; Kwasnieski, D.; Weiss, E.A. An Introduction to Ratchets in Chemistry and Biology, Materials Horizons, 4, 310-318 (2017).

An Introduction to Ratchets in Chemistry and Biology

107. Wang, C.; Kodaimati, M.; Schatz, G.C.; Weiss, E.A. The Photoluminescence Spectral Profiles of Water-Soluble Aggregates of PbS Quantum Dots Assembled through Reversible Metal Coordination, Chem. Commun., 53, 1981-1984 (2017).

The Photoluminescence Spectral Profiles of Water-Soluble Aggregates of PbS Quantum Dots Assembled through Reversible Metal Coordination

106. Bettis Homan, S.; Sangwan, V.K.; Balla, I.; Bergeron, H.; Weiss, E.A., Hersam, M. Ultrafast exciton dissociation and long-lived charge separation in a photovoltaic pentacene-MoS2 van der Waals heterojunction, Nano Lett., 17, 164-169 (2017).

Ultrafast exciton dissociation and long-lived charge separation in a photovoltaic pentacene-MoS2 van der Waals heterojunction

2016

105. Thompson, C.M.; Kodaimati, M.; Westmoreland, D.E.; Calzada, R.; Weiss, E.A. Electrostatic Control of Excitonic Energies and Dynamics in a CdS Quantum Dot through Reversible Protonation of its Ligands, J. Phys. Chem. Lett., 7, 3954-3960 (2016).

104. Lee, K.-R.; Bettis Homan, S.; Kodaimati, M.; Schatz, G.C.; Weiss, E.A. Near-Quantitative Yield for Transfer of Near-Infrared Excitons within Solution-Phase Assemblies of PbS Quantum Dots, J. Phys. Chem. C, 120, 22186–22194 (2016)

103. Calzada, R.; Thompson, C.M.; Westmoreland, D.E.; Edme, K.; Weiss, E.A. Organic-to-Aqueous Phase Transfer of Cadmium Chalcogenide Quantum Dots using a Sulfur-Free Ligand for Enhanced Photoluminescence and Oxidative Stability, Chem. Mater., 28, 6176-6723 (2016).

102. Harris, R.D.; Bettis Homan, S.; Kodaimati, M.; He, C.; Nepomnyashchii, A.B.; Swenson, N.K.; Lian, S.; Calzada, R.; Weiss, E.A. Electronic Processes within Quantum Dot-Molecule Complexes, Chem. Rev., 116, 12865–12919 (2016)

101. Wang, C.; Weiss, E.A. Sub-Nanosecond Resonance Energy Transfer in the Near-Infrared within Self-Assembled Conjugates of PbS Quantum Dots and Cyanine Dye J-aggregates, J. Am. Chem. Soc., 138, 9557–9564 (2016).

100. He, C.; Weinberg, D.J.; Nepomnyashchii, A.B.; Lian, S.; Weiss, E.A. Control of the Redox Activity of PbS Quantum Dots by Tuning Electrostatic Interactions at the Quantum Dot/Solvent Interface, J. Am. Chem. Soc., 138, 8847–8854 (2016).

99. McPhail, M.; Campbell, G.P.; Bedzyk, M.J.; Weiss, E.A. Structural Features of PbS Nanocube Monolayers upon Treatment with Mono- and Di- Carboxylic Acids and Thiols at a Liquid-Air Interface, Langmuir, 32, 6666–6673 (2016).

98. Lian, S.; Weinberg, D.J.; Harris, R.D.; Kodaimati, M.; Weiss, E.A. Sub-picosecond Photoinduced Hole Transfer from a CdS Quantum Dot to a Molecular Acceptor bound through an Exciton-Delocalizing Ligand, ACS Nano, 10, 6372–6382 (2016).

97. Lau, B.; Kedem, O.; Ratner, M.A.; Weiss, E.A. Identification of Two Mechanisms for Current Production in a Biharmonic Quantum Flashing Ratchet, Phys. Rev. E, 93, 062128 (2016).

96. Young, R.M.; Jensen, S.C.; Edme, K.; Wu, Y.; Krzyaniak, M.D.; Vermeulen, N.A.; Dale, E.J.; Stoddart, J.F.; Weiss, E.A.; Wasielewski, M.R.; Co, D.T. Ultrafast Simultaneous Two-Electron Transfer in a CdS Quantum Dot-Extended Viologen Cyclophane Complex, J. Am. Chem. Soc., 138, 6163–6170 (2016).

95. Swenson, N.K.; Ratner, M.A.; Weiss, E.A. Computational Study of the Resonance Enhancement of Raman Signals of Ligands Adsorbed to CdSe Clusters through Photoexcitation of the Cluster, J. Phys. Chem. C., 120, 20954–20960 (2016).

94. Leng, H.; Loy, J.; Amin, V.A.; Weiss, E.A.; Pelton, M. Electron Transfer from Single Semiconductor Nanocrystals to Individual Acceptor Molecules, ACS Energy Letters, 1, 9-15 (2016).

93. Aruda, K.O.; Amin, V.A.; Lau, B.; Weiss, E.A. A Description of the Adsorption and Exciton Delocalizing Properties of p-Substituted Thiophenols on CdSe Quantum Dots, Langmuir, 32, 3354-3364 (2016).

92. Swenson, N.K.; Ratner, M.A.; Weiss, E.A. Computational Study of the Influence of the Binding Geometries of Organic Ligands on the Photoluminescence Quantum Yield of CdSe Clusters, J. Phys. Chem. C, 120, 6859–6868 (2016).

91. Nepomnyashchii, A.; Harris, R.D.; Weiss, E.A. The Composition and Permeability of Oleate Adlayers of CdS Quantum Dots upon Dilution to Photoluminescence-Relevant Concentrations, Anal. Chem., 88, 3310–3316 (2016).

90. Weinberg, D.J.; He, C.; Weiss, E.A. Control of the Redox Activity of Quantum Dots through Introduction of Fluoroalkanethiolates into their Ligand Shells, J. Am. Chem. Soc., 138, 2319–2326 (2016).

89. Jensen, S.C.; Bettis Homan, S.; Weiss, E.A. Photocatalytic Conversion of Nitrobenzene to Aniline through Sequential Proton-Coupled One-Electron Transfers from a Cadmium Sulfide Quantum Dot, J. Am. Chem. Soc., 138, 1591–1600 (2016).

88. Harris, R.D.; Amin, V.A.; Lau, B.; Weiss, E.A. The Role of Inter-Ligand Coupling in Determining the Interfacial Electronic Structure of Colloidal CdS Quantum Dots, ACS Nano, 10, 1395–1403 (2016).

2015

87. McPhail, M.; Weiss, E.A. The Influence of Interparticle Structure on the Dark and Photocurrent Dynamics within Arrays of Thiocyanate-Treated PbS Nanocubes, Chem. Mater., 27, 5605-5613 (2015).

86. Amin, V.A.; Aruda, K.O.; Lau, B.; Rasmussen, A.M.; Edme, K.; Weiss, E.A. ­The Dependence of the Bandgap of CdSe Quantum Dots on the Surface Coverage and Binding Mode of an Exciton-Delocalizing Ligand, Methylthiophenolate, J. Phys. Chem. C, 119, 19423-19429 (2015).

85. Edme, K.; Bettis Homan, S.; Nepomnyashchii, A.B.; Weiss, E.A. Ultrafast Exciton Decay in PbS Quantum Dots through Simultaneous Electron and Hole Recombination with a Surface-Localized Ion Pair, Chem. Phys., 471, 46-53 (2016).

84. Aruda, K.O.; Bohlmann Kunz, M.; Tagliazucchi, M.; Weiss, E.A. Temperature-Dependent Permeability of the Ligand Shell of PbS Quantum Dots Probed by Electron Transfer to Benzoquinone, J. Phys. Chem. Lett., 6 , 2841–2846 (2015).

83. Holbrook, R.J.; Weinberg, D.J.; Peterson, M.D.; Weiss, E.A.; Meade, T.J. Light-Activated Protein Inhibition through Photoinduced Electron transfer of a Ruthenium(II)-Cobalt(III) Bimetallic Complex, J. Am. Chem. Soc., 137, 3379–3385 (2015).

82. Jin S.; Tagliazucchi, M.; Son, H.-J.; Harris, R.D.; Aruda, K.O.; Weinberg, D.J.; Nepomnyashchii, A; Farha, O.K.; Hupp, J.T.; Weiss, E.A. Enhancement of the Yield of Photoinduced Charge Separation in Zinc Porphyrin-Quantum Dot Complexes by a bis-Dithiocarbamate Linkage, J. Phys. Chem. C, 119, 5195–5202 (2015).

2014

81. Weinberg, D.J.; Dyar, S.M.; Khademi, Z.; Malicki, M.; Marder, S.; Wasielewski, M.R.; Weiss, E.A. Spin-Selective Charge Recombination in Complexes of CdS Quantum Dots and Organic Hole Acceptors, J. Am. Chem. Soc.,136, 14513-14518 (2014).

80. Tagliazucchi, M.; Zou, F.; Weiss, E.A. Kinetically Controlled Self-assembly of Latex-Microgel Core-Satellite Particles, J. Phys. Chem. Lett., 5, 2775-2780, ACS Editors’ Choice Article (2014).

79. Jin, S.; Harris, R.D.; Lau, B.; Aruda, K.O.; Amin, V.A.; Weiss, E.A. Enhanced Rate of Radiative Decay in CdSe Quantum Dots upon Adsorption of an Exciton-Delocalizing Ligand, Nano Lett., 14, 5323-5328 (2014).

78. Cass, L.C.; Swenson, N.K.; Weiss, E.A. Electronic and Vibrational Structure of Complexes of Tetracyanoquinodimethane with Cadmium Chalcogenide Quantum Dots, J. Phys. Chem. C, 118, 18263−18270 (2014).

77. Tagliazucchi, M.; Weiss, E.A.; Szleifer, I. Dissipative Self-assembly of Particles Interacting through Time-oscillatory Potentials, Proc. Natl. Acad. Sci., 111, 9751-9756 (2014).

76. McPhail, M.R.; Weiss, E.A. The Role of Organosulfur Compounds in the Growth and Final Surface Chemistry of PbS Quantum Dots, Chem. Mater., 26, 3377-3384, ACS Editors’ Choice Article (2014).

75. Rasmussen, A.M.; Ramakrishna, S.; Weiss, E.A.; Seideman, T. Theory of Ultrafast Photoinduced Electron Transfer from a Bulk Semiconductor to a Quantum Dot, J. Chem. Phys., 140, 144102 (2014).

74. Peterson, M.D.; Jensen, S.C.; Weinberg, D.J.; Weiss, E.A. Mechanisms for Adsorption of Methyl Viologen on CdS Quantum Dots, ACS Nano, 8, 2826-2837 (2014).

73. Weiss, E.A. Controlling Interfacial Processes in Excitonic Nanoparticles, Guest commentary, J. Phys. Chem. Lett., 5, 361-362 (2014).

72. Tice, D.B.; Li, S.; Tagliazucchi, M.; Buchholz, D.B.; Weiss, E.A.; Chang, R.P.H. Ultrafast Modulation of the Plasma Frequency of Vertically Aligned ITO Nanowire Arrays, Nano Lett., 14, 1120-1126 (2014).

71. Peterson, M.D.; Cass, L.C.; Harris, R.; Edme, K.; Sung, K.; Weiss, E.A. The Role of Ligands in Determining the Exciton Relaxation Dynamics in Semiconductor Quantum Dots, Ann. Rev. Phys. Chem., 65, 317-339 (2014).

2013

70. Peterson, M.D.; Holbrook, R.J.; Meade, T.J.; Weiss, E.A. Photoinduced Electron Transfer from PbS Quantum Dots to Cobalt(III) Schiff Base Complexes: Light Activation of a Protein Inhibitor, J. Am. Chem. Soc., 135, 13162-13167 (2013).

69. Knowles, K.E.; Tagliazucchi, M.; Malicki, M.; Swenson, N.K.; Weiss, E.A. Electron Transfer as a Probe of the Permeability of Organic Monolayers on the Surfaces of Colloidal PbS Quantum Dots, J. Phys. Chem. C, 117, 15849- 15857 (2013).

68. Cass, L.C.; Malicki, M.; Weiss, E.A. The Chemical Environments of Oleate Species within Samples of Oleate-Coated PbS Quantum Dots, Anal. Chem., 85, 6974 – 6979 (2013).

67. Weiss, E.A. Organic Molecules as Tools to Control the Growth, Surface Structure and Redox Activity of Colloidal Quantum Dots, Acc. Chem. Res., 46, 2607-2615 (2013).

66. Tice, D.B.; Weinberg, D.J.; Mathew, N.; Chang, R.P.H.; Weiss, E.A. Measurement of Wavelength-Dependent Polarization Character in the Absorption Anisotropies of Ensembles of CdSe Nanorods, J. Phys. Chem. C, 117, 13289 – 13296 (2013).

65. Aruda, K.O.; Tagliazucchi, M.; Sweeney, C.M.; Hannah, D.C.; Weiss, E.A. The Role of Interfacial Charge Transfer-Type Interactions in the Decay of Plasmon Excitations in Metal Nanoparticles, Phys. Chem. Chem. Phys., 15, 7441 – 7449 (2013).

64. Knowles, K.E.; Peterson, M.D.; McPhail, M.R.; Weiss, E.A. Exciton Dissociation within Quantum Dot-Organic Complexes: Mechanisms, Use as a Probe of Interfacial Structure, and Applications, J. Phys. Chem. C, 117, 10229–10243 (2013).

63. Knowles, K.E.; Malicki, M.; Parameswaran, R.; Cass, L.C.; Weiss, E.A. Spontaneous Multi-Electron Transfer from the Surfaces of PbS Quantum Dots to TCNQ, J. Am. Chem. Soc., 135, 7264-7271 (2013).

62. Aruda, K.O.; Tagliazucchi, M.; Sweeney, C.M.; Hannah, D.C.; Schatz, G.C.; Weiss, E.A. Identification of Parameters through which Surface Chemistry Determines the Lifetimes of Hot Electrons in Small Au Nanoparticles, Proc. Natl. Acad. Sci., 110, 4212-4217 (2013).

61. Shastry, T.A.; Morris-Cohen, A.J.; Weiss, E.A.; Hersam, M.C. Probing Carbon Nanotube-Surfactant Interactions with Two-Dimensional DOSY NMR, J. Am. Chem. Soc., 135, 6750–6753 (2013).

60. Frederick, M.T.; Amin, V.A.; Weiss, E.A. The Optical Properties of Strongly Coupled Quantum Dot-Ligand Systems, J. Phys. Chem. Lett., 4, 634-640 (2013).

59. Frederick, M.T.; Amin, V.A. Swenson, N.K.; Ho, A.Y.; Weiss, E.A. Control of Exciton Confinement in Quantum Dot-Organic Complexes through Modulation of the Energetic Alignment of Interfacial Orbitals, Nano Lett., 13, 287-292 (2013).

58. Morris-Cohen, A.J.; Peterson, M.D.; Kamm, J.; Frederick, M.T.; Weiss, E.A. Evidence for a Through-Space Path for Electron Transfer from Quantum Dots to Carboxylate-Functionalized Viologens, J. Phys. Chem. Lett., 3, 2840-2844 (2013).

2012

57. Evans, C.M.; Love, A.M.; Weiss, E.A. Surfactant-Controlled Polymerization of Semiconductor Clusters to Quantum Dots through Competing Step-Growth and Living Chain-Addition Mechanisms, J. Am. Chem. Soc., 134, 17298-17305 (2012).

56. Morris-Cohen, A.J.; Malicki, M.; Peterson, M.D.; Slavin, J.J.W.; Weiss, E.A. Chemical, Structural, and Quantitative Analysis of the Ligand Shells of Colloidal Quantum Dots, Chem. Mater., 25, 1155-1165 (2013).

55. Tagliazucchi, M.; Blaber, M.; Schatz, G.C.; Weiss, E.A.; Szleifer, I. The Optical Properties of Responsive Hybrid Au@polymer Nanoparticles, ACS Nano, 6, 8397-8406 (2012).

54. Knowles, K.E.; Malicki, M.; Weiss, E.A. Dual-Timescale Photoinduced Electron Transfer from PbS Quantum Dots to a Molecular Acceptor, J. Am. Chem. Soc., 134, 12470 – 12473 (2012).

53. Malicki, M.; Knowles, K.E.; Weiss, E.A. Gating of Hole Transfer from Photoexcited PbS Quantum Dots to Aminoferrocene by the Ligand Shell of the Dots, Chem. Commun., Special Emerging Investigators issue, 49, 4400-4402 (2013).

52. Tagliazucchi, M.; Amin, V; Schneebeli, S.T.; Stoddart, J.F.; Weiss, E.A. High-contrast photopatterning of photolu­­minescence within quantum dot films through degradation of a charge-transfer quencher, Adv. Mater. (Frontispiece), 24, 3617-3621 (2012).

51. Evans, C.M.; Cass, L.C.; Knowles, K.E.; Tice, D.B.; Chang, R.P.H.; Weiss, E.A. Review of the synthesis and Properties of Colloidal Quantum Dots: The Evolving Role of Coordinating Surface Ligands, J. Coord. Chem., 65, 2391-2414 (2012).

50. Morris-Cohen, A.J.; Aruda, K.O.; Rasmussen, A.; Canzi, G.; Seideman, T.; Kubiak, C.P.; Weiss, E.A. Controlling the Rate of Electron Transfer between a Quantum Dot and a Tri-Ruthenium Molecular Cluster by Tuning the Chemistry of the Interface, Phys. Chem. Chem. Phys., Special Issue on Electron Transfer Theory, 14, 13794-13801 (2012).

49. McArthur, E.A.; Godbe, J.M.; Tice, D.B.; Weiss, E.A. A Study of the Binding of Cyanine Dyes to Colloidal Quantum Dots using Spectral Signatures of Dye Aggregation, J. Phys. Chem. C, 116, 6136-6142 (2012).

48. Morris-Cohen, A.J.; Vasilenko, V.; Amin, V.A.; Reuter, M.; Weiss, E.A. A Model for Adsorption of Ligands to Colloidal Quantum Dots with Concentration-Dependent Surface Structure, ACS Nano, 6, 557-565 (2012).

47. Knowles, K.E.; Frederick, M.T.; Tice, D.B.; Morris-Cohen, A.J., Weiss, E.A. Colloidal Quantum Dots: Think Outside the (Particle-in-a-)Box, J. Phys. Chem. Lett., 3, 18-26 (2012).

2011

46. Tagliazucchi, M.; Tice, D.B., Sweeney, C.M.; Morris-Cohen, A.J.; Weiss, E.A. Ligand-Controlled Rates of Photoinduced Electron Transfer in Hybrid CdSe Nanocrystal/Poly(viologen) Films, ACS Nano, 5, 9907-9917 (2011).

45. Frederick, M.T.; Cass, L.C.; Amin, V.A.; Weiss, E.A. A Molecule to Detect and Perturb the Confinement of Charge Carriers in Quantum Dots, Nano Lett., 11, 5455-5460 (2011).

44. Morris-Cohen, A.J.; Frederick, M.T.; Cass, L.C.; Weiss, E.A. Simultaneous Determination of the Adsorption Constant and the Photoinduced Electron Transfer Rate for a CdS Quantum Dot-Viologen Complex with Transient Absorption Spectroscopy, J. Am. Chem. Soc., 133, 10146–10154 (2011).

43. Peterson, M.D.; Hayes, P.L; Martinez, I.S.; Cass, L.C.; Achtyl, J.L.; Weiss, E.A.; Geiger, F.M., Second Harmonic Generation Imaging with a kHz Amplifier, Optics Mater. Expr., 1, 57-66 (2011).

42. Frederick, M.T.; Achtyl, J.L.; Knowles, K.E.; Weiss, E.A.; Geiger, F.M. Surface-Amplified Ligand Disorder in CdSe Quantum Dots Determined by Electron and Coherent Vibrational Spectroscopies, J. Am. Chem. Soc.,133, 7476-7481 (2011).

41. Lilly, G.D.; Whalley, A.C.; Grunder, S.; Valente, C.; Frederick, M.T.; Stoddart, J.F.; Weiss, E.A. Switchable Photoconductivity of Quantum Dot Films using Cross-Linking Ligands with Light-Sensitive Structures, J. Mater. Chem., 21, 11492-11497 (Front Cover Article) (2011).

40. Knowles, K.E.; McArthur, E.A.; Weiss, E.A. A Multi-Timescale Map of Radiative and Nonradiative Decay Pathways for Excitons in CdSe Quantum Dots, ACS Nano, 5, 2026-2035 (2011).

39. Tice, D.B.; Frederick, M.T.; Chang, R.P.H.; Weiss, E.A. Electron Migration Limits the Rate of Photobrightening in Thin Films of CdSe Quantum Dots in a Dry N2(g) Atmosphere, J. Phys. Chem. C, 115, 3654-3662 (2011).

2010

38. Donakowski, M.D.; Godbe, J.; Sknepnek, R.; Knowles, K.E.; Olvera de la Cruz, M.; Weiss, E.A. A Quantitative Description of the Binding Equilibria of para-Substituted Aniline Ligands and CdSe Quantum Dots, J. Phys. Chem. C, 114, 22526-22534 (2010).

37. McArthur, E.A.; Morris-Cohen, A.J.; Knowles, K.E.; Weiss, E.A. Charge Carrier Resolved Relaxation of the First Excitonic State in CdSe Quantum Dots Probed with Near-Infrared Transient Absorption Spectroscopy, J. Phys. Chem. B, 114, 14514–14520 (2010).

36. Frederick, M.T., Weiss, E.A., Relaxation of Exciton Confinement in CdSe Quantum Dots by Modification with a Conjugated Dithiocarbamate Ligand, ACS Nano, 4, 3195-3200 (2010).

35. Morris-Cohen, A.J.; Frederick, M.T.; Lilly, G.D.; McArthur, E.A.; Weiss, E.A. Organic Surfactant-Controlled Composition of the Surfaces of CdSe Quantum Dots, J. Phys. Chem. Lett., 1, 1078-1081 (2010).

34. Morris-Cohen, A.J.; Donakowski, M.D.; Knowles, K.E.; Weiss, E.A. The Effect of a Common Purification Procedure on the Chemical Composition of the Surfaces of CdSe Quantum Dots Synthesized with Trioctylphosphine Oxide (TOPO), J. Phys. Chem. C, 114, 897-906 (2010).

33. Knowles, K.E.; Tice, D.B.; McArthur, E.A.; Solomon, G.C.; Weiss, E.A. Chemical Control of the Photoluminescence of CdSe Quantum Dot-Organic Complexes with a Series of p-Substituted Aniline Ligands, J. Am. Chem. Soc., 132, 1041-1050 (2010).

2009

32. Nakanishi, H.; Bishop, K.J.; Kowalczyk, B.; Nitzan, A.; Weiss, E.A.; Tretiakov, K.V.; Apodaca, M.M.; Klajn, R.; Stoddart, J.F.; Grzybowski, B.A. Photoconductance and Inverse Photoconductance in Films of Functionalized Metal Nanoparticles, Nature, 460, 371-375 (2009).

From Postdoc Work

31. Lipomi, D.J., Weiss, E.A., Whitesides, G.M. “Green Nanofabrication: Unconventional   Approaches for the Conservative Use of Energy” in Nanotechnology for the Energy Challenge (invited chapter), Javier Garcia-Martinez, Ed., Wiley-VCH.

30. Cucinotta, F., Popović, Z., Weiss, E.A., Whitesides, G.M., De Cola, L. “Micro-Contact Transfer Printing of Zeolite Monolayers” Advanced Materials, 21, 2009, 1142.

29. Dickey, M.D., Weiss, E.A., Smythe, E.J., Chiechi, R.C., Capasso, F., Whitesides, G.M. “Fabrication of Arrays of Metal and Metal-Oxide Nanotubes by Shadow Evaporation” ACS Nano, 2, 2008, 800.

28. Dickey M.D., Chiechi, R.C., Larsen, R.L., Weiss, E.A., Weitz, D.A., Whitesides, G.M. “Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature” Adv. Func. Mat., 18, 2008, 1097.

27. Weiss, E.A., Porter, V.J., Chiechi, R.C., Geyer, S.M., Bell, D.C., Bawendi, M.G., Whitesides, G.M. “The Use of Size-Selective Photoexcitation to Study Photocurrent through Junctions containing Single-Size and Multi-Size Arrays of Colloidal CdSe Quantum Dots” J. Am. Chem. Soc., 130, 2008, 83.

26. Weiss, E.A., Chiechi, R.C., Geyer, S.M., Porter, V.J., Bell, D.C., Bawendi, M.G., Whitesides, G.M. “Size-Dependent Charge Collection in Junctions Containing Single-Size and Multi-Size Arrays of Colloidal CdSe Quantum Dots” J. Am Chem. Soc., 130, 2008, 74.

25. Chiechi, R.C., Weiss, E.A., Dickey, M.D., Whitesides, G.M. “Eutectic Gallium-Indium (EGaIn): A Moldable Liquid Metal for the Electrical Characterization of Self-Assembled Monolayers (SAMs)” Angew. Chem., 47, 2007, 142.

24. Weiss, E.A., Kaufman, G.K., Kriebel, J.K., Li, Z., Whitesides, G.M. “Si/SiO2-Templated Formation of Ultraflat Metal Surfaces on Glass, Polymer, and Solder Supports: Their Use as Substrates for Self-Assembled Monolayers (SAMs)” Langmuir, 23, 2007, 9686.

23. Weiss, E.A., Kriebel, J.K., Rampi, M.A., Whitesides, G.M. “The Study of Charge Transport through Organic Thin Films: Mechanism, Tools, and Applications” Phil. Transact. Royal Soc. A, 365, 2007, 1509.

22. Weiss, E.A., Chiechi, R.C., Kaufman, G.K., Kriebel, J.K., Li, Z., Duati, M., Rampi, M.-A., Whitesides, G.M. “The Influence of Defects on the Electrical Characteristics of Mercury-Drop Junctions: A Study of Self-Assembled Monolayers (SAMs) of n-Alkanethiolates on Rough and Smooth Silver” J. Am. Chem. Soc., 129, 2007, 4336.

21. Lahav, M., Narovlyansky, M., Winkleman, A., Perez-Castillejos, R., Weiss, E.A., Whitesides, G.M. “Patterning of Polyacrylic Acid by Ionic Exchange Reactions in Microfluidic Channels” Adv. Mat., 18, 2006, 3174.

20. Lahav, M., Weiss, E.A., Xu, Q., Whitesides, G.M. “Core-Shell and Segmented Polymer-Metal Composite Nanostructures” Nano Lett., 6, 2006, 2166.

From Ph.D Work

19. Mi, Q., Weiss, E.A., Ratner, M.A., Wasielewski, M.R. “Influence of Structural Dynamics on Charge Recombination Rates in Photogenerated Radical Ion Pairs: Evidence from EPR Spectroscopy and Computation” Appl. Magnet. Reson., 31, 2007, 253.

18. Jakob, M., Berg, A., Stavitski, E., Chernick, E.T., Weiss, E.A., Wasielewski, M.R., Levanon, H. “Photoinduced electron transfer through hydrogen bonds in a rod-like donor-acceptor molecule: A time-resolved EPR study” Chem. Phys., 324, 2006, 63.

17. Mi, Q., Chernick, E.T., McCamant, D., Weiss, E.A., Ratner, M.A., Wasielewski, M.R. “Spin Dynamics of Photogenerated Triradicals in Fixed Distance Electron Donor-Chromophore-Acceptor-TEMPO Molecules” J. Phys. Chem. A, 110, 2006, 7323.

16. Chernick, E.T., Mi, Q., Kelley, R.F., Weiss, E.A., Jones, B.A., Marks, T.J., Ratner, M.A., Wasielewski, M.R. “Electron Donor-Bridge-Acceptor Molecules with Bridging Nitronyl Nitroxide Radicals: Influence of a Third Spin on Charge and Spin Transfer Dynamics” J. Am. Chem. Soc., 128, 2006, 4356.

15. Weiss, E.A.; Katz, G.; Wasielewski, M.R.; Ratner, M.A.; Kosloff, R.; Nitzan, A. “Electron transfer mechanism and the locality of the system-bath interaction: a comparison of local, semi-local, and pure dephasing models” J. Chem. Phys., 124, 2006, 074501.

14. Weiss, E.A.; Tauber, M.J.; Kelley, R.F.; Ahrens, M.J.; Ratner, M.A.; Wasielewski, M.R. “Conformationally gated switching between superexchange and hopping in oligo-p-phenylene based molecular wires” J. Am. Chem. Soc., 127, 2005, 11842.

13. Goldsmith, R.H.; Sinks, L.E; Kelley, R.F.; Weiss, E.A.; Ratner, M.A.; Wasielewski, M.R. “Wire-like charge transport at near constant bridge energy through fluorene oligomers” Proc. Natl. Acad. Sci., 102, 2005, 3540.

12. Sinks, L.E.; Weiss, E.A.; Wasielewski, M.R. “Effect of charge delocalization on radical ion pair electronic coupling” Chem. Phys. Lett., 404, 2005, 244.

11. Weiss, E.A.; Tauber, M.J.; Ratner, M.A.; Wasielewski, M.R. “Spin dynamics as a probe of molecular dynamics: Temperature dependent magnetic field effects on charge recombination within a covalent radical ion pair” J. Am. Chem. Soc., 127, 2005, 6052.

10. Weiss, E.A.; Wasielewski, M.R.; Ratner, M.A. “A general formulation for exchange coupling within long-distance radical ion pairs” J. Chem. Phys., 123, 2005, 064504.

9. Weiss, E.A.; Wasielewski, M.R.; Ratner, M.A. “Molecules as Wires: Molecule-assisted motions of charge and energy” invited chapter, Topics in Current Chemistry, Ed: De Cola, L., Vol. 257, 2005, 103.

8. Weiss, E.A.; Chernick, E.T., Wasielewski, M.R. “Modulation of radical ion pair lifetimes by the presence of a third spin in rod-like donor-acceptor triads” J. Am. Chem. Soc, 126, 2004, 2326.

7. Weiss, E.A.; Ahrens, M.J.; Sinks, L.E.; Gusev, A.V.; Ratner, M.A; Wasielewski, M.R. “Making a molecular wire: charge and spin transport through para-phenylene oligomers” J. Am. Chem. Soc., 126, 2004, 5577.

6. Weiss, E.A.; Sinks, L.E.; Lukas, A.S.; Chernick, E.T.; Wasielewski, M.R. “Influence of energetics and electronic coupling on through-bond and through-space electron transfer within U-shaped donor-bridge-acceptor arrays” J. Phys. Chem. B, 108, 2004, 10309.

5. Weiss, E.A.; Ahrens, M.J.; Sinks, L.E.; Ratner, M.A.; Wasielewski, M.R. “Solvent control of spin-dependent charge recombination mechanisms within donor-conjugated bridge-acceptor molecules” J. Am. Chem. Soc., 126, 2004, 9510.

4. Lukas, A.S; Bushard P.J.; Weiss E.A.; Wasielewski M.R. “Mapping the influence of molecular structure on rates of electron transfer using direct measurements of the electron spin-spin exchange interaction” J. Am. Chem. Soc., 125, 2003, 3921.

3. Weiss, E.A.; Ratner, M.A.; Wasielewski, M.R. “Direct measurement of singlet-triplet splitting within rodlike photogenerated radical ion pairs using magnetic field effects: estimation of the electronic coupling for charge recombination” J. Phys. Chem. A, 107, 2003, 3639.

2. van der Boom, T.; Hayes, R.T.; Zhao, Y.; Bushard, P.J.; Weiss, E.A.; Wasielewski, M.R. “Charge transport in photofunctional nanoparticles self-assembled from zinc 5,10,15,20-tetrakis(perylene-diimide)porphyrin building blocks” J. Am. Chem. Soc., 124, 2002, 9582.

From Undergrad Research

1. Geremia, J.; Weiss, E.A; Rabitz, H. “Achieving laboratory control of quantum dynamics phenomena using nonlinear functional maps” Chem. Phys. 267, 2001, 209.