13 Relations: Language, Epistemologies, Categories, and Concepts

Douglas Medin, Bethany Ojalehto, Sandra Waxman, and Megan Bang

13.1 Introduction

For centuries, concepts have held a privileged position in inquiries about the nature of knowledge, the dawning of insight and reason, the discovery of language, and the acquisition of mind. Concepts matter, and in this chapter we argue that so does the language we use to describe them and the cultural practices in which we embed them. This position represents something of a shift from studies that have focused on properties of individual category members, such as whether they are good or poor examples of the category (e.g., Rosch and Mervis 1975), or properties of individual categories, such as whether they are subordinate, basic, or superordinate level (as in the classic studies of Rosch et al. 1976). Instead, we will take a more relational perspective, with respect to how our language and how our cultural orientations permeate conceptual behavior.¹

Our recent work has focused on acquisition and use of concepts pertaining to the biological world and on identifying the role of language, culture, and experience in shaping them. Transparently this requires a cross-cultural and crosslinguistic developmental approach. The work we summarize here represents the efforts of longstanding collaborations with psychologists, linguists, and anthropologists from the United States and abroad. A central theme in our work, and in this chapter, is the variety of ways in which the relation between humans and the rest of the natural world can be conceptualized.

We consider this focal question from two perspectives: How are human beings conceptualized, taxonomically speaking, and how do we understand the relations between

¹ Although we consider the interactions among concepts, cultural practices, and language, our goal in this chapter is not to resolve broad, longstanding debates about linguistic relativity. In our view, progress on this debate depends on evidence documenting which concepts are available in advance of (or in the absence of) language, and how these concepts are shaped by the availability within a language of particular linguistic devices. The research we present here bears on these questions, but takes no stance on whether the concepts favored by members of one language group are or are not available to members of another.
human beings and the rest of the natural world, ecologically or relationally speaking? We begin with the taxonomic question.

13.2 Biological Categories: Humans, Nonhuman Animals, Plants, and the Hierarchical Relations among Living Things

Young children acquiring biological categories (e.g., human, animal, plant, living thing) must identify not only the content or members of each category, but also the relations among categories. In this section, we focus on these relations, paying special attention to three issues in particular: (1) How do adults and children from diverse communities conceptualize the relation between human and nonhuman animals? (2) How do children come to understand the relation between the plant and animal kingdoms? (3) How are these relations shaped by cultural and linguistic forces?

13.2.1 Animals and the (Special?) Case of Humans
All animals are equal but some animals are more equal than others.
—George Orwell

What is the place of humans in the biological world? This question is intriguing because there is no one “correct” answer. As adults, we answer fluidly. In the context of Western taxonomic science, we see human beings as biological organisms (class Mammalia). In the context of Western religion, human beings typically are seen as distinct from the rest of the biological kingdom (humans alone were created in the image of God; this brings in the idea of human dominion, and the importance of stewardship over other living things). Everyday discourse is full of simile and metaphor involving comparison of humans to other animals (“I’m as hungry as a bear,” “Don’t eat like an animal”). How do children come to acquire and reconcile these different notions about the (biological) status of humans? As will be seen, there is an intricate interplay between linguistic and conceptual development.

Extensive evidence demonstrates that from infancy, names (and nouns in particular) are a catalyst in the formation of object categories (for evidence from infants, see Waxman and Litz 2006; for adults, see Goss 1961; Spiker 1956). Infants’ ability to form an object category (e.g., animal) when presented with a set of disparate exemplars in the absence of a name (e.g., a dog, a horse, a duck) improves dramatically when these exemplars are introduced with the same name. By fourteen months, this link between naming and object categories is specific to nouns (Echols and Marti 2003; Waxman and Booth 2004; Waxman and Booth 2001; Waxman et al. 1997).

Poulin-Dubois and Shultz 1990; Scott and Monesson 2009). By three to five months, babies begin to make a principled distinction between animate and inanimate objects (Bertenthal 1993; Woodward, Sommerville, and Guajardo 2001) and between agents and nonagents (Leslie 1994; Masser and R. Gelman 1988; Newman et al. 2010; Opfer and S. Gelman 2010; see also Luo, Kaufman, and Ballaire 2009; Fauen and Trouble 2009; Shuts, Markson, and Spelke 2009).

If names serve as invitations to form categories (Waxman and Markow 1995), then the names that children hear for biological entities should support the acquisition of biological concepts (S. Gelman 2003; S. Gelman and Markman 1986; Graham, Kilbreath, and Welder 2004; Waxman and Booth 2001; Waxman et al. 1997). A large body of ethnobiological research provides insights into how the entities in the natural world are named across diverse languages (Berlin 1992), and it shows that most languages name the concept ANIMAL. This, coupled with infants’ early predisposition to link names and object concepts, likely supports the early acquisition of ANIMAL.

There is, however, one important complicating factor: the noun animal is polysemous. This polysemy has gripped our attention, primarily because it has consequences for children’s appreciation of the relation among living things and for understanding where humans fit into the taxonomic scheme for biological kinds.

13.2.2 Animal is Polysemous
For English-speaking adults, animal can refer either to an inclusive concept, including all animate beings (as in, “Animals have babies”), or to a more restricted concept, including nonhuman animals but excluding humans (as in, “Don’t eat like an animal”). For ease of exposition, we will refer to these two nested concepts, respectively, as ANIMALinclusive and ANIMALexclusive. Although this polysemous use of animal is endemic, the context in which animal is used commonly provides strong cues about which sense is intended.

Whatever its source, this type of polysemy could pose developmental challenges: it nouns support the formation of object categories, and if the same name animal points to two different but hierarchically related concepts, then it should be difficult for children to settle on its meaning.

A review of the developmental literature suggests that infants may begin to appreciate both concepts—ANIMALinclusive and ANIMALexclusive—within the first year. Although infants and children include both humans and nonhuman animals in a concept organized around animacy or agency (Massey and R. Gelman 1988; Opfer and S. Gelman 2010; see Luo, Kaufman, and Ballaire 2009 for discussion), they also distinguish between humans and nonhuman animals (Scott and Monesson 2009; Vouloumanos et al. 2009, 2010).
If both of these underlying concepts are represented by toddlers, which do they
take to be the referent of animal? We have pursued this question with several different
methods, from interviewing children, observing their performance in categorization
tasks, and analyzing the language input they receive from their parents.

Our studies with English-speaking children suggest that they typically interpret
animal in the contrastive sense. For example, we asked five-year-old children to
tell “all the animals you can think of.” Children named a wide variety of ani-
mals, ranging from mammals to insects, but not a single child included humans (or
“people”) in their list (Winkler-Rhoades et al. 2010). We also asked three- and five-
year-olds directly whether humans “are animals,” and both age groups overwhelm-
ingly denied that humans are animals. By nine years of age, roughly 40 percent of the
children agreed that the name animal could be applied to humans (Leddon et al. 2012).
In short, English-speaking children favor the contrastive sense of the term animal.

We also designed an experimental task to ask under what conditions young children
might engage the overarching animal inclusive concept (Herrmann, Medin, and Waxman
2012). We used the link between naming and object categorization as an opportunity
to explore three- and five-year-old children’s representations of animal. In this task, we
presented children with two distinct training items, labeled them with the same novel
noun, and then probed children’s extensions of that noun to a range of other entities.
In the first study, both training items were nonhuman animals, in the second, training
items included one human and one nonhuman animal. At issue is whether they would
spontaneously extend the noun to include humans along with nonhuman animals as
members of the same overarching animal inclusive concept.

Our materials included laminated photographs depicting humans, nonhuman
animals, and inanimate objects (plants, nonliving natural kinds, artifacts). To begin,
the researcher presented each card, in random order, helping the child to identify the
object it depicted. Next, the experimenter introduced a hand puppet (Pinky), explain-
ing that Pinky lived far away and used “funny words for things.” The experimenter
then pointed to the two training items (dog, bird) in random order, saying, “Pinky calls
these both blickets. This one is a blicket, and this one is a blicket.” The experimenter then
presented each test photograph in random order, asking, “Does Pinky call this one a
blicket?”

As expected, both three- and five-year-old children extended the novel noun to
the test items that matched the training items and to the other nonhuman animals,
excluding the inanimate entities. But neither the three- nor five-year-olds spontane-
ously extended the novel noun to include humans. In fact, they were just as unlikely
to say “yes” to a human as to an inanimate object. In other words, children favored the
animal inclusive category. Nonetheless, this does not preclude the possibility that they also
represent the more inclusive sense.

We pursued this possibility by introducing another group of children to a novel
noun for a human and either a bird or a dog. Otherwise, the stimulus materials and
procedure were identical to those from before. For half of the children, a human and
a dog served as training items; for the others, a human and bird served as the training
items. We reasoned that if three- and five-year-olds do have access to animal inclusive, they
might engage it in this naming context.

Including a human as a training item had a dramatic effect. The three-year-olds’
performance fell to chance. Their unsystematic extension of the novel word signaled
their difficulty accessing an overarching concept including both human and nonhu-
man animals. In contrast, five-year-olds extended the novel noun systematically, this
time including both human and nonhuman animals. This illustrates their appreciation
of animal inclusive.

The fact that three- and five-year-olds did not spontaneously include humans
in the first study suggests that humans are not prototypical animals, at least not for
preschool-aged children. That three-year-olds had trouble including human and non-
human animals in the same (newly) named category in the second study underscores
the developmental challenge they face in identifying the scope of animal.

Does parents’ use of language provide children with some help in identifying
the relation between human and nonhuman animals? The answer seems to be no
considerable support for the concept animal inclusive by typically using animal to refer to
nonhuman animals. But they offer scant support for animal inclusive; only rarely do they
invoke the term animal to refer to humans. This discourse practice likely highlights the
uniqueness of humans and fortifies the distinction between human and nonhuman
animals, but provides little support for the overarching animal inclusive concept spanning
them.

Taking yet another tack on the conceptual polysemy, we shifted to a crosslinguis-
tic approach, specifically focusing on the contrast between English and Indonesian.
In Indonesian, animal is not polysemous. This has significant and sometimes coun-
terintuitive cognitive consequences. Our work in Indonesia has been a venture with
our former student Flo Anggoro (e.g., Anggoro, Waxman, and Medin 2008). Before
turning to these studies, we need to broaden our conceptual focus to the concept
living thing.

There is strong consensus that appreciation of the concept living thing (members
of the plant and animal kingdoms is a late and laborious developmental achieve-
ment. Piaget (1954) noted young children’s tendency to mistakenly attribute life status
to inanimate objects that appear to move on their own or to exhibit goal-directed
behavior (e.g., clouds). He interpreted this “childhood animism” as a reflection of chil-
dren’s inchoate grasp of concepts such as animal and living thing. More recent evidence
indicates that even ten-year-old children have difficulty understanding the scope of LIVING THING (Hatano et al. 1993).2

Our studies show that how these concepts are named in a given language shapes their acquisition. The work in Indonesia provides a case in point. In Indonesian, animal refers to ANIMALcontrastive; it cannot be applied to humans. The more inclusive ANIMALinclusive concept remains unnamed. To examine how this crosslinguistic difference affects children’s acquisition of concepts of the natural world, we recruited monolingual Indonesian-speaking children (in Jakarta) and monolingual English-speaking children (from the greater Chicago area) from urban elementary schools.

Because adult interpretations of word meanings may not mirror precisely those of children, we began by asking how Indonesian-speaking children interpret the word animal. The interview was identical to the one used earlier: an experimenter presented Indonesian six- and nine-year-old children with a photograph of a human and asked, “Could you call this an ‘animal?’” (“Mungkinkah ini ‘hewan’?”). Indonesian-speaking children uniformly endorsed the ANIMALcontrastive view. Recall that although English-speaking children from three to five years also favored ANIMALcontrastive, by nine years of age, roughly 40 percent endorsed the ANIMALinclusive interpretation.

To ascertain whether this difference in naming practices is reflected in children’s conceptual organization, we designed two sorting tasks. In the first, we presented six- and nine-year-old children with a set of picture cards representing humans, nonhuman animals, or plants and invited them to place “the kinds of things that belong together in the same pile.” If naming a concept facilitates its access, then the concept ANIMALinclusive should be more accessible to English- than Indonesian-speaking children, and among the English-speaking children, it should be more accessible to older than younger children (see Anggoro, Waxman, and Medin 2008 for details).

As predicted, English-speaking children were more likely than their Indonesian-speaking counterparts to spontaneously place humans and nonhuman animals in the same category, and among the English-speaking children, nine-year-olds were more likely to do so than six-year-olds. These results suggest that children’s spontaneous categorizations reflect their appreciation of the naming practices in their communities.

Next we used a more tightly structured categorization task, this time tapping into English- and Indonesian-speaking children’s appreciation of the overarching concept LIVING THING. A chief goal of this study was to test Waxman’s (2005) prediction about the relation between naming and the establishment of biological categories. Before presenting the prediction, a bit of background is necessary. Attributing life status to plants is a late developmental achievement. When English-speaking children are asked to sort objects on the basis of which ones are “alive,” they systematically exclude plants.

2. Later on, we consider the idea that natural intimates like rock and water may be animates in other cultural schemes.

This work shows that the way in which biological concepts are named influences their acquisition. What remains unanswered is whether this difference between children acquiring Indonesian and English is attributable to the polysemy of animal (English) or the unnamed status of ANIMALinclusive (Indonesian). Answers will rest on evidence from languages that name the ANIMATE node, but in which the name is not polysemous. For example, Czech appears to be one such language; ANIMALinclusive is named (jivý), and this name is distinct from that for ANIMALcontrastive (živo). That is a task for future work.
We have focused thus far on how children from distinct linguistic communities establish fundamental biological concepts and discover the relations among them. With this as background, we now consider how children use these biological kinds in inductive reasoning, and the role of language, culture, and expertise in reasoning.

13.3 Reasoning about Biological Kinds

We begin with a small detour. The evidence so far suggests that children have difficulty conceptualizing humans as animals, and, at best, see humans as atypical or unusual members of the animal category. This latter observation seems to imply that the category HUMAN BEING would make a poor base for generalizing (biological) properties to other biological organisms. So, for example, if I told you that humans have some property X and that dogs have some property Y and asked you whether it is more likely that squirrels also have property X or property Y, you might expect most bets to be placed on Y, because X could be some peculiarly human sort of thing. Surprisingly, however, there is a body of research and theory that comes to just the opposite conclusion: that for young children, humans are the prototype or paragon for inductive biological reasoning, and that this human-centered focus is only overturned between five and seven years of age, when children come to reason more like adults, seeing humans as an atypical instance of animal (Carey 1985).

This shift has been interpreted within a domain-specific view of human cognition. A trend in the cognitive and developmental sciences has been a shift from viewing cognition as a domain-general, general-purpose learning and thinking system to seeing cognition as a set of domain-specific mechanisms that are specialized in their processes (Cosmides, Tooby, and Barkow 1992; Medin, Lynch, and Solomon 2000). That is, learning may be guided by certain (possibly innate) skeletal principles, constraints, and assumptions about the world (e.g., R. Gelman 1990; Keil 1981; Spelke 1990). In an important book, Carey (1985) developed a theory of concept learning as built on framework theories that entail ontological commitments in the service of a causal understanding of real-world phenomena.

That's quite a mouthful; basically it means that different causal principles may operate in different domains. Consider, for example, an event in which a baseball shatters a window. The relevant features and rules underlying our appreciation of the physical aspect of this event (e.g., force mechanics) are quite different from the relevant features and rules that underlie our understanding of the social or psychological aspects of the same event (e.g., blame, responsibility). Developmentalists have argued that (at least) three distinct domains guide children's development of knowledge: physical processes and events (naïve or folk physics), biological processes and events (naïve or folk biology) and psychological events and processes (naïve or folk psychology).

For Carey (1985, 2009), a key childhood achievement consists of developing a (naïve) biology distinct from naïve psychology. For Western adults who tend to endorse a dualism between mind and body, psychology and biology are distinct domains with distinct causal principles. Eating a candy bar can give someone instant energy, but it will not make them a sweeter person. Carey (1985) argued that (young) children have not yet carved out a domain for biological processes. Instead, biological processes are initially interpreted within the domain of naïve psychology.

That's a strong claim, and Carey (1985) offered some striking evidence to support it. There are two steps to her argument. The first step to note is that though humans may not be prototypical within a biological domain, they are the premier psychological beings. The second step is to show that children's biological reasoning is organized around humans as the prototype. If this is the case, it would support the idea that children's biological reasoning is organized in terms of psychology.

The strongest evidence for a human-centered stance in young children's biological reasoning comes from Carey's own pioneering research (Carey 1985). In an inductive generalization task involving children (ranging from four to ten years of age) and adults from Boston, participants were introduced to a novel biological property (e.g., "has an omentum"), taught that this property is true of one biological kind (human, dog, or bee), and then a few days later asked whether other entities might have this property.

Carey reported dramatic developmental changes in inductive reasoning. If the novel property had been introduced as true of a human, four- to five-year-olds generalized, or projected, that property broadly to other biological kinds as a function of their similarity to humans. But if the identical property was introduced in conjunction with a dog or bee, four- to five-year-olds made relatively few generalizations to other animals. This produced a pattern of generalization that violates intuitive notions of similarity. For example, four- to five-year-olds generalized more from human to dog (stinkoo) than from bee to bug. Overall, Carey (1985) provided two strong indices of anthropocentric reasoning: (1) projections from humans to other animals were stronger than projections from dog or bee; and (2) there were strong asymmetries in projections to and from humans (e.g., inferences from human to dog were stronger than from dog to human).

Older children and adults gave no indications of anthropocentric reasoning. Instead they tended to generalize novel biological properties broadly from one biological kind to another, whether the property had been introduced as a property of a human or nonhuman (dog, bee) animal. Moreover, they showed no human-animal asymmetries in their reasoning. These data suggest that for older children and adults, reasoning about the biological world is organized around a concept of animal that includes both human and nonhuman animals.

Carey (1985; Carey and Spelke 1994) has argued forcefully from these data that young children hold a qualitatively different understanding of biological phenomena.
from that of adults. Carey (1985) entitled her book *Conceptual Change in Childhood* because her data suggested that children begin with a human-centered, psychological understanding of biology and later on must reorganize their conceptual system to reflect the understanding that, biologically speaking, humans are one kind among many.

13.3.1 A Place for Language

With these striking results as background, we are ready to turn to the role of language in children’s inductive reasoning. Recall that Indonesian, unlike English, has no dedicated name for the overarching category of animate beings. Our first question (Anggoro, Medin, and Waxman 2010) was whether the *animalcontrastive* term in Indonesian would limit generalization of properties from humans and (other) animals and vice versa.

Following Carey, we employed a category-based induction task in which children are introduced to a novel property of an entity (the base), and then asked whether this property can be generalized to other entities (the targets). Human-nonhuman animal asymmetries should be attenuated in Indonesian-speaking children, if evident at all. Indonesian children’s tendency to generalize from either a human or a nonhuman animal base should be associated with the distinctive category of the target (human or nonhuman animal).

The predictions for English-speaking children are a bit more complex. We suspected that when a nonhuman animal serves as the base, English-speaking children would favor the *animalinclusive* category. Put differently, when a property is attributed to a nonhuman animal base and a human appears as the target, English-speaking children may be reluctant to generalize on grounds that “people are not animals” (this is the *animalinclusive* interpretation). In contrast, when a human serves as the base, English-speaking children may access the *animalcontrastive* category. This category should support their generalization from a human base to nonhuman animal targets. That is, children should be less likely to make the appeal that “animals are not people.” In sum, English-speaking children’s access to the *animalinclusive* category (a category that should be less available to Indonesian-speaking children) may account for their asymmetries favoring generalizations from humans than from nonhuman animals (see Medin and Waxman 2007 for related arguments and evidence).

Finally, because factors other than naming practices shape children’s biological reasoning, we expected that the differences between English- and Indonesian-speaking children’s patterns of induction would become less pronounced as children from both communities gain access to other sources of information about biological phenomena. That is, cultural practices (including naming) may have the strongest effects on the youngest children; as children get older and are exposed to a broader range of biologically relevant information, these effects may be attenuated.

Colored photographs depicting a range of living and nonliving entities served as stimuli. Four of the living things were bases; the remaining photographs were targets. We selected items that were familiar to both Chicago and Jakarta children.

Because procedural details will prove to be important, we’re going to describe the task in more detail than we might otherwise. To begin, the experimenter showed the first base (e.g., a dog) and said, for example, “Dogs have some stuff inside them, and it is called *sara*.” She then presented each target picture (e.g., a bear) and asked, “Do you think bears have *sara* inside like dogs do?” Then a different base was selected, and children were told about a different novel property (e.g., *belga*) it had and were asked what else might have it and so on for the other two bases.

We found that when a human served as the base, English-speaking children were more likely than Indonesian-speaking children to generalize to nonhuman animal targets, but when a nonhuman animal served as the base, English- and Indonesian-speaking children performed comparably. This is exactly as predicted. These differences were much attenuated among nine-year-olds, consistent with the prediction that, with or without a dedicated name for the category that includes human and nonhuman animals, as children acquire more biological knowledge, they bring human and nonhuman animals into closer correspondence.

A closer look at children’s performance as they progressed through this task revealed an intriguing finding. Thus far, we have interpreted our results as evidence that when English- and older Indonesian-speaking children are introduced to a novel property on a human base and asked to generalize to a nonhuman animal target, their access to the *animalinclusive* category results in asymmetries favoring humans. We further reasoned as follows: if this is the case, then perhaps the salience of this category will influence children’s performance on subsequent trials. If on the child’s first trial, a human happens to serve as the base, perhaps their use of the *animalinclusive* Category would carry over to subsequent trials when a human serves as the target. But if on the child’s first trial, a nonhuman animal happens to serve as the base, then their use of the *animalinclusive* Category could carry over to subsequent trials.

To test this possibility, we analyzed the effect of order (human base first versus later) on children’s performance. When a human was the base for the first trial, English-speaking six- and nine-year-olds and Indonesian-speaking nine-year-olds generalized strongly from a human to nonhuman animals (overall $M = 0.67$), but when the human base was introduced in subsequent trials (after human had been a target), they were much less likely to do so (overall $M = 0.37$). That is, the human-nonhuman animal asymmetries were much stronger if a human served as the initial base.

One reason order effects are important is that several claims about producing different results from Carey’s (including some of our own) also have differed by, unlike Carey, using multiple bases. Consequently, it isn’t clear whether the different patterns...
observed in other studies reflect order effects associated with multiple bases or deeper differences associated with different study populations.

In summary, young children's reasoning about this biological relation is influenced by naming practices, and this influence is attenuated over development. Clearly, then, children's biological reasoning is influenced by factors other than language alone. The developmental attenuation likely reflects the influence of learning experiences beyond naming practices. Of course, the children in Jakarta are exposed not only to a Western curriculum, but also to Western-inspired media (e.g., movies) that adopt an anthropocentric model of nonhuman animals. We'll take up this idea again shortly.

13.3.2 Responses to Carey's Arguments

Carey's provocative claims about biological reasoning stimulated a great deal of research. Some of the research showed that young children appreciate some distinctively biological mechanisms, such as growth (Hickling and S. Gelman 1995) and inheritance (e.g., Hirschfeld and S. Gelman 1994; see also S. Gelman 2003). One intriguing suggestion is that young children do begin with a distinctively biological framework theory, but it is based on the principle of "vitalistic energy" (Hatano and Inagaki 2000; Inagaki and Hatano 2002). The researchers proposed that cultural models espoused within a community shape children's biological reasoning. Their studies revealed that five- to eight-year-old Japanese children understand many bodily processes in terms of vitalism—a causal model pervasive in Japan and one that relies on the distinctly biological concept of energy. We will take up this notion of cultural models and biology again after a modest detour.

One of the most contested domain distinctions, and one that has generated a great deal of research, is that between psychology and biology.

13.3.2.1 Expertise

In the mid- to late 1990s, we teamed with cognitive anthropologist Scott Atran and a cadre of bright graduate students and postdocs to explore the role of culture and expertise in people's understanding of biology (Atran and Medin 2008). Our interest in expertise was driven by two main factors. One consisted of close parallels between Itza' Maya elders and U.S. biological experts who differed from the Maya elders in almost everything but biological expertise (Bailenson et al. 2002; Lopez et al. 1997; Medin et al. 1997; Proffitt, Coley, and Medin 2000). The other was corresponding evidence of devolution, or loss of biological knowledge in technologically saturated cultures such as the United States (e.g., Wolff, Medin, and Pankratz 2003).

An ingenious study by Inagaki and Hatano also pointed to the importance of expertise. Inagaki and Hatano (Inagaki and Hatano 1990; Inagaki and Hatano 2002) found that urban children raised in Tokyo who were closely involved with raising goldfish generalized biological facts to kinds similar to humans and to kinds similar to goldfish. This suggests that the relative advantage for humans over nonhuman animals as bases for induction derives from children's greater willingness to generalize from a familiar base than from an unfamiliar base. Although they did not use Carey's induction task, the anthropocentric pattern produced by urban Japanese children who did not raise goldfish converged well with her (1985) results. But the full pattern of results points to a different interpretation—urban children's tendency to treat humans as a privileged base may be driven by the fact that humans are the only biological kind that they know much about.

Observations like these may offer insights into children's behavior in Carey's induction task. We began to suspect that five-year-olds' human-centered reasoning patterns might reflect urban children's lack of knowledge about and intimate contact with the natural world. To pursue this idea, we employed Carey's inductive reasoning task with rural children, who presumably have "more." As we anticipated, four- to five-year-old rural children did not exhibit the asymmetries and human-centered reasoning that Carey had noted in their urban counterparts (e.g., Atran et al. 2001; Ross et al. 2003).

Medin and Waxman recall chatting with Susan Carey about these expertise effects. She offered two responses as challenges: (1) maybe all children pass through a human-centered stage but rural children do it sooner, and (2) by the way, no one had used a procedure close enough to hers to convincingly demonstrate a different pattern of results.

As we noted in reporting the Anggoro, Medin, and Waxman (2010) order effects, this second issue is not just an in principle one. Carey's procedure involved teaching a child about only one base and then bringing them back a few days later for generalization tests. In contrast, typically after using one base and one novel biological property, we went on to present another base and a new property, followed by a new set of generalization tests, and so on. Notice that these design differences (coupled with the order effects observed in Anggoro, Medin, and Waxman) raise the possibility that we might indeed have seen human-centered reasoning if we had followed Carey's procedure more closely.

We therefore adopted a closer approximation to Carey's original procedure in a series of follow-up studies with urban children, rural European American children, and rural Menominee (Native American) children. Following Carey, we taught children only about a single base and gave the generalization test a day or two later. Here's what we found (see Medin et al. 2010; Waxman and Medin 2007). First, we replicated Carey's (1985) pattern of human-centered reasoning for the urban four- to five-year-olds. These young children showed greater generalization for a human base than for a dog base, and they also showed greater generalization from human to dog than from dog to human. Second, unlike their urban counterparts, four- and five-year-old rural European American children generalized more from a dog base than from a human base. Interestingly, however, they did show greater generalization from a human base to a dog target than from a dog base to a human target. Third, and somewhat surprisingly, like their
urban counterparts, four- to five-year-old Menominee children favored the human over
the dog as a base when generalizing a novel property to other animals. In part, this may
reflect the cultural significance of bears: generalizations from human to bear are espe-
cially strong (86%) for four- to five-year-old Menominee children, compared with the
urban (67%) and rural European American (52%) children. But in contrast with urban
children, young Menominee children showed no evidence of human-dog asymmetries.

In summary, we followed Carey’s method with enough fidelity to replicate her find-
ing of human-centered reasoning in four- to five-year-old urban children. With worries
about procedure more or less out of the way, we found that neither rural European
American children nor rural Menominee children demonstrated Carey’s two markers
of anthropocentrism (human-animal asymmetries and humans as a more effective base
than animals).

These results have two key implications. First, human-centered reasoning in four-
and five-year-olds is far from universal. Second, the two signatures of anthropo-
centric reasoning in Carey’s account—generalization and asymmetries—do not
necessarily tap into a single underlying model or construal of biological phenomena.

These results leave Carey’s first point intact. Perhaps our rural children did indeed
go through the stage of a human-centered biology, but passed through it earlier than
urban children. The obvious way to address this question is to run younger rural
children. But there’s a problem—for a task like this, four years old is about as young as
one can go and still get meaningful data. Three- and four-year-old children may answer
the various induction questions, but may say “no” (or “yes”) to everything.

To accommodate children as young as three years of age, we took our cue from
developmental studies using puppets. Rather than having an experimenter provide the
information, we used puppets to do so (Herrmann, Waxman, and Medin 2010). We
introduced two small puppets, and in a warm-up period, showed children that each
puppet was “right some of the time and wrong some of the time.” In the induction
task the two puppets disagreed, and the child was enlisted to cast the deciding vote.
With this method (and an experimenter who has excellent rapport), three-year-olds
provided systematic, meaningful data.

13.3.2.2 Cultural Models Matter We began this series of studies by focusing on
three- and five-year-old urban children. We reasoned that if the human-centered
reasoning pattern seen in young urban children represents the acquisition of a
culturally transmitted anthropocentric model, it may be the case that urban children
younger than four to five years old, who have received less exposure to the anthropo-
centric model, would not (yet) favor humans over nonhuman animals in their reasoning.

And that is what we found (Herrmann, Waxman, Medin 2010). Three-year-old
urban children responded systematically, generalizing more from a dog base than from
In what follows, we describe just what aspects of Indigenous epistemologies make them *relational* epistemologies.

Note that our use of *relational epistemologies* is plural, as are the Indigenous communities with whom we collaborate (e.g., Native Americans in Chicago; Indigenous Ngobe in Panama; members of the Menominee Nation in Wisconsin). This signals our commitment to cognitive and cultural diversity within the realm of *relational frameworks*.

As a broad framework theory, relational epistemologies vary in their particulars across different geographical and cultural communities; their coherence obtains in common signatures of *relationality* structuring modes of attention to and interaction with the world. We focus on relational frameworks grounded in Indigenous American cultures, in an approach consistent with that offered by Raymond Pierotti (2011): the influence of local places on cultures and the corresponding diversity of peoples attached to those places guarantee the existence of variation ... Despite this spatial variation in ecology and physical space there appears to exist a fundamental shared way of thinking and a concept of community common to Indigenous peoples of North America. (5)

We will have more to say about this in our concluding discussion, along with some observations on domain-specific causal frameworks.

Part of the power of relational epistemologies derives from their capacity to channel everyday practices and patterns of attention. Organizing knowledge along particular habitual lines of thinking changes how one attends to the environment, as patterns of expectation train our awareness, leading us to see the world in different ways. For example, if one thinks of plants as unthinking, deaf-and-dumb organisms, one will hardly be attuned to potential signs of plant communication. In contrast, attending to multiple signs of agency in plants creates the conditions for observing complex patterns of reaction, memory, anticipation, and response among the vegetal world.

The studies on relational orientations described below were conducted among Menominee, Chicago intertribal, and Ngobe Indigenous communities.

Rural Menominee population The Menominee are the oldest continuous residents of Wisconsin. Historically, their lands covered much of Wisconsin but were reduced, treaty by treaty, until the present 95,000 hectares was reached in 1854. The present site was forested then and now—there are currently about 88,000 hectares of forest. Sustainable coexistence with nature is a strong value (Hall and Pecore 1995). Hunting and fishing are important activities, and children are familiar with both by age twelve. There are four to five thousand Menominee living on tribal lands. Over 60 percent of Menominee adults have at least a high school education, and 15 percent have had some college.

American Indian Center of Chicago population There are approximately forty thousand Indian people in Cook County, many of whom were relocated to the area in the 1950s and 1960s, during the federal relocation era. The Chicago community is quite diverse, with individuals representing more than one hundred tribes from across the country. Native American children are scattered across a number of schools in the district and attend classes that reflect more spiritual orientations (talking in terms of “Mother Earth”), holism (children should understand that they are a part of nature), and traditional values of coexistence.

13.4.1 Practicing Relational Epistemology: Engaging Human-Nature Relations

Different cultures have arrived at different ideas concerning the quality and extent of relations between humans and the rest of the natural world. For a child, figuring out the relation between humans and nonhuman animals depends largely on the kinds of relations their own community entertains with the nonhuman world. We have begun to explore how young children are educated into different sets of relations with the natural world through the values and activities of their communities (Bang, Medin, and Atran 2007).

In a study comparing parental values, Native American parents (both Menominee and urban Natives) and rural European American parents were asked what they believed was important for their children to learn about nature and the biological world. As compared to European American parents, Native parents’ values reflected more spiritual orientations (talking in terms of “Mother Earth”), holism (children should understand that they are a part of nature), and traditional values
dren, we have found evidence that young children are attuned to distinctive cultural ways may be salient, even in the eyes of young children. In our work with Ngobe children, we have found evidence that young children are attuned to distinctive cultural patterns of human-nature relations (Herrmann 2012). When Patricia Herrmann visited our Ngobe host community in Panama in 2011, she set out to extend her previous U.S.-based research by exploring ecological reasoning among Ngobe children. Children completed a standard triad task with three cards depicting entities from different biological categories (e.g., human, animal, plant) and asked children to choose “which two go together.” The twenty triads of interest included a human (either Ngobe [twelve sets] or non-Ngobe Latino/Caucasian [eight sets]) and two natural entities (animals or plants). Children could choose to pair the human with one of the natural entities (a human-nature relation), or to exclude the human and pair the two natural entities together (a human exclusion).

When given a triad that included a Ngobe person, children were more likely to pair the Ngobe with a natural entity; but when given a triad including a non-Ngobe person, children were more likely to exclude the human. This suggests that children saw the relations between Ngobe people and natural entities as more pertinent and salient than for non-Ngobe people. In our view, these sorting patterns reveal that children see Ngobe and non-Ngobe relations with nature differently. Children implicitly view Ngobe individuals as more closely related to their environments than non-Ngobe individuals. The question then arises: How do children learn to structure these human-nature correspondences? This is where cultural frameworks enter the picture and we begin to explore the cognitive consequences of different cultural orientations to the natural world.

13.4.2 Thinking Relational Epistemology: Ecological Reasoning
At this point, the reader might be wondering: If Ngobe children recognize (implicitly or explicitly) that their own communities engage with nature in a manner distinct from non-Ngobe communities, then what does this difference consist of? We can turn to the children themselves for an answer. When asked to explain their sorting choices, children explained the majority of Ngobe-natural kind pairings through appeal to ecological relations. In fact, if the human included was a Ngobe, justifications were universally ecological (e.g., “People live near cows, and they give us meat”). But if the human included was a non-Ngobe, then justifications were more frequently taxonomic than ecological (e.g., “They are both alive”). Herrmann (2012) concluded, “When children consider the place of humans in the natural world, they take into account their knowledge about the relevant practices of particular communities. The children seemed to view the Ngobe as more a part of nature and non-Ngobe as more apart from nature.”

4. In a related unpublished study we have found that Chicago area Native American children sort animals, plants, and natural inanimates differently, depending on whether we ask them to take the perspective of an elder or a science teacher.
13.4.2.1 Relational Epistemology Before describing further research findings, we first outline important dimensions of relational epistemology from the perspective of anthropology. Relational epistemology was a term introduced by Bird-David in an influential paper (1999) in which she critiqued previous approaches to animism as a failed epistemology or primitive religion, and argued for a new appreciation of relational ways of engaging with the nonhuman world. For our purposes, relational epistemology can be seen as closely related to relational ontologies (e.g., Ingold 2006; Santos-Granero 2009), animisms (e.g., Harvey 2006), perspectivism (e.g., Stolze Lima 1999; Viveiros de Castro 1998), and Indigenous science and traditional ecological knowledge (e.g., Cajete 2000; Pierotti 2011).

In regard to human-nature relations, the relevant aspects of relational epistemology are (1) an appreciation of interdependencies among all components of the natural world, that is, all things are connected (e.g., Cajete 2000; Pierotti 2011, 62); (2) a framework for reasoning about things in terms of relationships; (3) a focus on whole organisms and systems at the macroscale level of human perception (also a signature of complex-systems theory; Pierotti 2011, 72–73); and (4) viewing nonhumans as individual “persons” in their own right. Overall, this worldview is aptly summarized by biologist Raymond Pierotti (2011):

Indigenous understanding of the natural world emerged from conceiving of the living world as a network of relationships across communities that include humans. Because of this understanding based on relationships, Indigenous principles and insights are also superior at understanding links between systems that are often considered to be separate by the Western tradition. (76)

Building on Indigenous science and philosophy, our research has sought to explore the cognitive consequences of these cultural worldviews and practices.

13.4.2.2 Ecological Reasoning among Children One sign that ecological reasoning may play an important role in children's developing notions of human-nature relations comes from children’s spontaneous discourse during the category-based induction tasks described earlier. When asked why they generalized a property attributed to bees to bears, Menominee children told us that the bee might transmit the property through the honey bears eat or by bees stinging bears (Ross et al. 2003). The standard category-based induction task was originally designed on the assumption that generalization will follow taxonomic or biological similarity, but, like biological experts and Indigenous adults in previous studies (Atran and Medin 2008), at least some Menominee children viewed ecological relations as the relevant cues for biological induction.

Do cultural orientations to nature affect cognitive development? We set out to explore this question more systematically in a comparative study among rural European American and Menominee children in Wisconsin (Unsworth et al. 2012). Previously, we had done studies with Menominee and European American expert fishermen and found that, although the two groups had comparable knowledge bases, including ecological knowledge, there were substantial differences in how that knowledge was organized. European American experts favored a taxonomic organization, and Menominee experts an ecological organization. These differences were evident in spontaneous sorting and sorting justifications as well as in speeded probes of fish-fish interactions (Medin et al. 2006). We wondered whether there would be parallel differences in the salience of ecological relations for young Menominee and European American children.

In one study (Unsworth et al. 2012) five- to seven-year-old rural Menominee and European American children were presented with pairs of photos (including nonhuman animal-animal, plant-animal, and plant-plant pairs, e.g., raspberries and strawberries) and asked why the two might go together. Both groups used habitat relations equally (e.g., both are found in the forest), but Menominee children were reliably more likely to mention food-chain (e.g., the stink bug might eat the leaves of the berry bush) and biological-needs relations (e.g., both need water, sunlight, or soil).

Yet another dimension of difference that unexpectedly emerged during interviews was mimicry. Menominee children sometimes spontaneously mimicked nonhuman animal species during the interview (e.g., “bees go buzzzzz”). Strikingly, not one of the rural European American children engaged in mimicry. Unsworth and coauthors interpreted this as evidence of Menominee children’s psychological closeness to nature through greater ease of perspective taking.

Given that Indigenous children and adults reason about human-nature relations in terms of ecological relations and interdependencies—both signatures of relational epistemology—do cultural orientations have the potential to fundamentally change the way we see and think about the world around us? This brings us to the question of conceptual organization and folk theories of reality.

13.4.2.3 Conceptual Organization and Causal Reasoning One reason that the role of Indigenous people as part of their ecological communities is so important is that they do not think of the nonhuman elements of their community as constituting “nature” or as “wilderness,” but as part of their social environment.

—Raymond Pierotti (2011, 29)

Knowledge Organization: Seeing Interconnectedness How knowledge is organized—where it exists in (the ecosystem of) awareness, the roots and branches it shares with neighboring concepts—is critical to defining the content and form of that knowledge. Can a habitual focus on relational interactions train attention to reveal different aspects of the natural world? We are beginning to see evidence converging from different
research sites to suggest that Indigenous communities see a wider range of cooperative and symbiotic relationships in nature when compared with their non-Indigenous local counterparts.

Engaging relational understandings of the natural world may partially determine the "nature" of the nature that you see around you. In studies in Guatemala examining the relationship between how different culture groups think about the rain forest and how they act on it, we have found striking differences between Indigenous Itza' Maya and immigrant Ladino agroforesters (e.g., Atran, Medin, and Ross 2005). In one line of studies, we directly probed for understandings of plant-animal helping and hurting relationships. We found that Maya and Ladino farmers had essentially the same understanding of how plants help animals. For Itza' Maya this was part of a rich reciprocal model where animals also help plants, but Ladino farmers overwhelmingly saw animals as having no effect on or as hurting plants. In developing our materials as part of a more open-ended interview, we asked how animals help plants. Ladino adults denied the presupposition in the question, typically saying, "Animals don't help plants; plants help animals." Other observations suggest that Ladino farmers were learning from the Itza', but this learning apparently did not include sensitivity to reciprocal relationships (Atran, Medin, and Ross 2005). It appears that a relational orientation to nature nurtures recognition of mutual dependencies and interspecies relationships in the biological world.

We have observed parallel results in a storytelling task about nonhuman animals. We used a nonfiction picture book depicting coyote and badger hunting in the American Southwest (ojalehto, Medin, Horton, García, and Kays, forthcoming). When Ngöbe and U.S. undergraduates narrated the (text-free) story, Ngöbe (correctly) interpreted the hunting relationship as cooperative, while U.S. undergraduates (misinterpreted it as competitive. (This is consistent with a broader emphasis on competitive over facilitative interactions in Western views of ecosystems; Bruno et al., 2003.) How did Ngöbe participants, who are unfamiliar with these animal species, "know" the hunt was cooperative?

Ngöbe colleagues explained that this was a case of Western versus Ngöbe sciences, which diverge on three major points: (1) an emphasis on interactions and relationships; (2) an approach to living with nature, as a system, rather than studying about nature, as isolated parts; (3) viewing nonhumans as intelligent beings worthy of respect. We do not think that Ngöbe necessarily see all relationships as cooperative, but rather that, like the Itza' Maya, they are prepared to "see" cooperation when it is present. While Indigenous sciences focus on interspecies relations and mutual dependency—supporting perceptions of cooperation and socialization among nonhuman species—Western sciences have a tradition of focusing on individual species and fitness—assuming competition among species (Pierotti 2011).

13.4.2 Unsettling Domains Studying relational epistemologies with Indigenous communities has had the bottom-up effect of redirecting our conceptual boundaries of inquiry, leading us to focus on the relations between human, biological, and ecological worlds in a new kind of domain-like perspective. It is instructive to consider that Western psychologists proposed three core domains of conceptual processing based on their perceptions of the relevant metaphysics (ontological categories and correlated causal systems) and unit size (individual entities). This thinking produced folk psychology (minds), folk biology (organisms), and folk physics (things).

Domain specificity has played a key role in catalyzing understanding of conceptual development, leading to many important discoveries. Missing from this picture, however, is a framework that accommodates how people conceptualize interactions among these systems. There was no folk ecology (interactions between organisms, persons, and matter, as well as climate systems), no folk dynamics (tracking weather systems, wave systems, water-flow systems), and no folk sociology (interactions between
persons, human or nonhuman). Lately, anthropologists and psychologists have been trying to make amends for this gap (see Atran, Medin, and Ross 2005; Hirschfeld 2012; White 2008).

We reckon that developing such folk theories would have required a different perception of the relevant metaphysics (process categories, or kinds of relations) and units (systems). In fact, it is tempting to think, based on what we have learned from our Native science colleagues, that Indigenous psychologists may have had the relevant tools and insights to develop folk ecology, folk sociology, and folk dynamics right from the start. But that’s another story.

13.5 Summary and Conclusions

We continue to be immersed in these and closely related research projects and are not in doubt guilty of team-centrism in focusing so much on our own research. With this apology in mind, we see these findings as carrying implications for core questions and issues in the cognitive sciences. The first question concerns the nature of concepts and categories and how we should study them. We see our research program as just one instantiation of a group of cognitive scientists placing the study of conceptual behaviors into broader contexts. These broader contexts include (1) analyses of information available in the environment, such as cultural artifacts (e.g., Morling and Lamotheaux 2008); (2) examining how the context of use affects conceptual representation (Markman and Ross 2003); (3) studying the interactions between language and conceptual development using crosslinguistic and developmental comparisons as a tool; and (4) assessing conceptual orientations implicit in (cultural) practices that form the background and perhaps the backbone of conceptual knowledge.

There is also a reflective component to our research as we scramble to detect cultural or epistemological presuppositions lurking in our studies (see also Medin and Bang 2014). For example, restricting our probes of ecological relations to plants and animals may reflect our seeing natural inanimates as irrelevant, despite the fact that nitch construction is an important construct in contemporary evolutionary theory. In the cultures of folk ecology in Guatemala we also excluded natural inanimates and the “Arux” forest spirits, which is a sensible practice only if the Itza’ Maya also exclude them. Even our preferred stance as “detached scientific observers” may be less about the psychological distance that is part of a Western cultural model. We are left to wonder what the psychology of concepts would look like if it were not owned and operated by Western scientists.

References

In his splendid little book Acts of Meaning, psychologist Jerome Bruner writes:

"How we "enter language" must rest upon a selective set of prelinguistic "readiness for meaning." That is to say, there are certain classes of meaning to which human beings are innately tuned and for which they actively search. ... Prior to language, these exist in primitive form as protolinguistic representations of the world whose full realization depends upon the cultural tool of language. (1990, 72)

Linguist Cliff Goddard quotes Bruner's words at the outset of his own study exploring a number of hypotheses "about the nature and identity of the innate concepts which may underpin language acquisition" (2001a, 193). Goddard develops his hypotheses in relation to a diary study of the semantic development of his young son, Peté (a pseudonym), conducted from Peté's second to fourth year.

Methodologically, Goddard's study is anchored in the NSM (natural semantic meta-language) approach to cognitive semantics, which is also the approach underlying the present chapter and which will be presented at some length in section 14.3. In his study, Goddard seeks to show that "the NSM approach generates interesting research hypotheses on language acquisition and allows for increased precision and testability in the notoriously difficult area of child semantics." As Goddard further argues, and as I have argued in many publications myself, the NSM approach generates interesting research hypotheses about human cognition in general, and innate human concepts in particular (Wierzbicka 2011).

In this chapter, I report on the latest NSM findings about the "innate stock of conceptual primitives," as they manifest themselves in the semantic systems of the languages of the world. I also try to show that the NSM approach brings new tools to the study of the nature, origin, and development of human concepts. In doing so, I use as my primary reference point the developmental psychologist Susan Carey's 2009 book The Origin of Concepts. In this book, Carey posits the existence of innate "core cognition,"