• Hydrogeothermal Convective Circulation Model for the Formation of the Chicxulub Ring of Cenotes in the Yucatan Peninsula, Mexico

The Chicxulub impact near the center of the carbonate Yucatan  platform produced a low permeability and high thermal conductivity melt rock that arguably extends to the basement rock at 3.5 km below surface. Heat of impact enforced the pre-existing geothermal circulation pattern, driving convective flow, with strong vertical components. Even with depletion of the heat of impact, the high thermal conductivity of the crystalline melt would lead to enhanced geothermal gradients overlying the impact structure near the center of the platform.

Yucatan - ROC
Colored SRTM elevation model (NASA, 2000).

The cenotes overlying the crater are deep (150+ m) vertical shafts with most (but not all) breaching the surface. The pit geomorphology suggests a bottom-up formation. Also, water temperature and conductivity profiles support ongoing vertical flux in some deep pit cenotes.

EMR - AGU 2015 Poster
Monroy-Ríos E (2015) AGU Fall Meeting .

Within this framework, I’m currently working in a conceptual model for the formation of the Ring of Cenotes by hydrogeothermal convective circulation in the post-impact carbonate sequences, leading to spatially focused dissolution at depth, with voids initiated along the crater edge effectively propagating upwards, often breaching the surface.

  • Subterranean Estuaries in Karst: Water-Rock interactions and elemental flux to coastal ocean

My current research involves water-rock interactions and geochemistry of coastal carbonate aquifers. I’m employing technical  cave diving  to get access to the geology of the marvelous underwater cave systems in the Yucatan Peninsula.

About to sample into a cave in the Yucatan Peninsula with my advisor Patricia (Trish) Beddows.

I have been collecting hand-size specimens of carbonate rocks from underwater caves, dry caves, and quarries to perform stratigraphic correlations and geochemical analyses. The samples are analyzed for elemental chemical composition, stable carbon and oxygen isotopes, lithology and fossil content. This information, when together with the aqueous chemistry, will improve our understanding of the nature of the water-rock interactions in karstic coastal systems.

Outcrop of very fine grain, well indurated bedrock between softer fine grain carbonate layers.

4 thoughts on “Research”

  1. Hola Emiliano. Te felicito por este blog tan interesante.
    Hay alguna posibilidad de recibir alguna ´Newsletter`?
    Saludos cordiales.

Leave a Reply

Your email address will not be published. Required fields are marked *

Emiliano Monroy-Ríos