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Gene positioning and expression
Defne Egecioglu and Jason H Brickner
Within the nucleus, the genome is spatially organized.

Individual chromosomes are non-randomly positioned with

respect to each other and with respect to nuclear landmarks

[1,2]. Furthermore, the position of individual genes can reflect

their expression. Here we discuss two well-characterized

examples of gene relocalization associated with transcriptional

activation: 1) developmentally regulated genes that move from

the nuclear periphery to transcription factories in the

nucleoplasm upon induction and 2) genes that are targeted

from the nucleoplasm to the nuclear periphery, through

interactions with the nuclear pore complex (NPC), upon

activation. Finally, we speculate as to the mechanistic and

functional commonalities of these phenomena.
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Movement of developmentally regulated
genes during differentiation
In differentiated metazoan cells, most heterochromatin

localizes at the nuclear periphery [3,4]. Likewise, in bud-

ding yeast, silent subtelomeric genes localize at nuclear

periphery [4–6]. These observations suggest that the

nuclear periphery is a transcriptionally repressive environ-

ment. Consistent with this model, artificially tethering the

yeast mating type locus to the nuclear envelope is sufficient

to overcome loss of a cis-acting silencing element [7,8] and

artificially tethering loci to the nuclear lamina in mamma-

lian cells is sufficient to promote silencing [9�,10�]. This

suggests that localization of genes at the nuclear periphery

can promote transcriptional silencing.

Some genes localize to the nuclear periphery when

repressed, but relocalize upon induction (Figure 1). A

number of developmentally induced genes from different

organisms and tissue types localize at the nuclear periph-

ery in cells in which they are repressed and away from the
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nuclear periphery in cells in which they are expressed.

This was first reported for the IgH and Igk loci in mice

[11], which localize to the nuclear periphery in hemato-

poietic progenitor cells and, after induction in pro-B cells,

to the nuclear interior. In mice, several other loci reloca-

lize from the nuclear periphery to the nuclear interior

upon induction: the GFAP gene during astrocyte differ-

entiation [12], the b-globin locus during erythroid de-

velopment [13], the C-maf locus during T-cell

development [14], the MyoD locus during myoblast de-

velopment [15], and the Mash1 locus during neural de-

velopment [16]. In humans, the CFTR gene moves away

from the nuclear periphery in cells in which it is expressed

[17]. This phenomenon has recently been observed for

muscle-specific and gut-specific transgenes during de-

velopment in C. elegans [18��]. Thus, the movement of

individual genes from the nuclear periphery to the

nuclear interior upon differentiation is a common theme

among developmentally induced genes.

Several studies suggest that the interaction of genes with

the nuclear lamina at the nuclear periphery promotes

repression. Metazoan cells possess a lamina structure at

the nuclear periphery, a fibrous mesh made up of lamins

and lamin-associated proteins that colocalizes with hetero-

chromatin [19,20]. Genome-wide studies in Drosophila
show that much of the Drosophila genome interacts with

lamins and that interaction with lamins correlates with

transcriptional repression [21]. During astrocyte differen-

tiation in mice, the association of the genome with the

lamina changes in a cell type-specific manner, with genes

that become active losing their association with the lamina

[22,23��]. Finally, artificially tethering mammalian genes

to the nuclear lamina is sufficient to promote transcrip-

tional repression of many neighboring genes [9�,10�,24].

These results suggest that interaction of genes with the

nuclear lamina at the nuclear periphery promotes silencing.

How might interaction with the lamina promote repres-

sion? Recruitment of lamin A to promoters can repress

transcription in both yeast and human cells, suggesting that

lamins may directly inhibit transcription [25]. However, it

is also possible that the mechanism is less direct. In

mammals, histone deacetylases (HDACs) associated with

repression interact with inner-nuclear-membrane (INM)

proteins such as Emerin [26] and the lamin-associated

protein LAP2b [27,28]. This may explain the concen-

tration of hypoacetylated histones at the nuclear periphery

[29,30] and the repression of genes artificially tethered to

the nuclear lamina [10�]. Consistent with this model,

transcriptional repression induced by tethering to the

lamina can be relieved by treatment with tricostatin A,
www.sciencedirect.com
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Relocalization of developmentally regulated genes. Repressed genes often associate with the nuclear lamina at the nuclear periphery. Upon activation,

these genes are often targeted to the nucleoplasm. Certain co-regulated genes, located on different chromosomes (chromosome territories

represented as blue and pink zones) can colocalize with each other at transcription factories (yellow), located between territories. The colocalization of

certain genes requires a transcriptional activator (Klf1) that localizes to a subset of transcription factories [37��]. Colocalization may promote

expression of co-regulated genes by either concentrating factors that promote their expression or by allowing escape from repressive interactions with

the nuclear lamina.
an HDAC inhibitor [10�]. This model is reminiscent of the

mechanism by which subtelomeric genes are silenced in

budding yeast. In yeast, the Sir proteins that catalyze

deacetylation of histones at telomeres are concentrated

at the nuclear periphery and anchoring of telomeres to the

nuclear envelope seems to promote the establishment and

fidelity of silencing of subtelomeric genes [6,31–35]. Thus,

localization of genes at the nuclear periphery, coupled with

a heterogeneous distribution of repressive factors, could

promote repression. Furthermore, relocalization of genes

from this environment to a more permissive environment

might promote transcription.

After moving away from the nuclear periphery, some

developmentally co-regulated genes colocalize, a

phenomenon called gene ‘kissing’ (Figure 1) [36,37��].
www.sciencedirect.com 
Gene kissing can occur between genes on the same

chromosome, often megabases apart, or between genes

on different chromosomes. The genes colocalize either at

foci of active RNA polymerase II called transcription

factories [38] or near nuclear ‘speckles’ [39]. Furthermore,

the colocalization of genes on different chromosomes

correlates with common translocation sites [40–44]. Gene

kissing has been best characterized for genes induced in

erythroid lineages in both humans and mice [36,45–47].

Colocalization of the active mouse Hbb and Hba globin

genes with transcription factories has been demonstrated

by both immuno-FISH and molecular techniques and

requires Klf1, a transcription factor that regulates their

expression [37��]. Because there seem to be a limited

number of transcription factories per nucleus, kissing may

concentrate factors that promote expression of related
Current Opinion in Cell Biology 2011, 23:338–345
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genes [37��]. Thus, coupled with transcriptional regula-

tion, certain genes can colocalize in association with

subnuclear compartments.

Do these changes in gene positioning represent gene

targeting to different subnuclear locations, or does gene

positioning represent a downstream consequence of

expression? The available data do not resolve this question.

Consistent with the possibility that targeting might be

specific and controlled by cis-acting information, promoters

play an essential role in controlling gene positioning. The

relocalization of the mouse b-globin locus to a transcription

factory requires the Locus Control Region [13]. In C.
elegans, transgenic promoters for housekeeping genes loca-

lize in the nucleoplasm in all cell types, whereas promoters

from developmentally regulated genes localize in the

nucleoplasm in cells in which they are expressed and at

the nuclear periphery in cells in which they are not

expressed [18��]. Likewise, the colocalization of co-

regulated genes in mouse erythroid cells requires the

transcriptional activator Klf1 [37��], but does not require

ongoing transcription [48]. Consistent with the idea that

gene kissing could concentrate factors that promote

expression of related genes, Klf1 also localizes in a punctate

pattern within the nucleus that overlaps with the transcrip-

tion factories with which the genes interact (Figure 1)

[37��]. These results are consistent with the possibility

that gene positioning and colocalization in the nucleoplasm

may be controlled by cis-acting DNA elements in the

promoters of these genes. However, it is not clear that

localization to the nuclear lamina represents targeting.

Association of genes with the nuclear lamina may represent

a default state for silenced loci. If lamin-associated proteins

both bind to hypoacetylated/heterochromatic loci and

promote deacetylation/heterochromatinization, silencing

might lead to peripheral localization and peripheral local-

ization might stabilize silencing. If so, then this interaction

might be blocked by transcription or by activator function.

Indeed, when very large transgene arrays are integrated

into the C. elegans genome they are silenced and their

localization does not reflect the promoter sequences in

the array. These heterochromatic arrays localize at the

nuclear periphery, regardless of the promoters that they

possess [18��]. Likewise, a large array of lac repressor

binding sites localizes at the nuclear periphery in hamster

cells [49]. Tethering an activation domain to this array

leads to relocalization of the array from the nuclear per-

iphery to a more internal site [49]. Thus, although it is

possible that active genes are targeted to particular sites

during differentiation, it remains unclear if localization to

the nuclear lamina represents targeting or a default desti-

nation for repressed loci.

Active genes at the nuclear periphery
Although heterochromatin and silenced genes localize at

the nuclear periphery, localization at the nuclear periph-

ery per se is not incompatible with transcription. Several of
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the genes that relocalize from the nuclear periphery to the

nucleoplasm during differentiation are induced before

relocalization [13,17,52]. Chromatin modifications associ-

ated with active transcription, as well as individual active

genes have been observed at the nuclear periphery in

mouse embryonic stem cells [50�,51]. Furthermore, even

genes that are tethered directly to the nuclear lamina are

not always repressed. Tethering of endogenous chromo-

somal loci to the lamina resulted in repression of some,

but not all of the neighboring genes [9�,10�,24]. An

artificial reporter gene tethered to the lamina is as indu-

cible as the nucleoplasmic form of the gene [24]. Thus,

transcription and localization to the nuclear periphery are

not always mutually exclusive, suggesting that nuclear

positioning can have different effects on different genes.

Some genes are targeted from the nucleoplasm to the

nuclear periphery when activated (Figure 2). This

phenomenon is best understood in budding yeast. Gen-

ome-wide chromatin immunoprecipitation microarray

experiments against nuclear pore proteins demonstrated

that hundreds of active genes interact with proteins of the

nuclear pore complex (NPC) and localize at the nuclear

periphery [53,54]. Inducible genes such as GAL1, INO1,

GAL2, HSP104, and SUC2 localize in the nucleoplasm

when repressed and relocalize to the nuclear periphery

upon activation [53–58]. Localization at the nuclear per-

iphery can promote transcription; tethering of INO1
[55,59] or HXK1 [57] to the nuclear envelope positively

affects how fast or how strongly these genes are expressed

and tethering of an artificial promoter to the NPC itself

[60] is sufficient to induce transcription. Work from

Drosophila [61] and mouse [39] raises the possibility that

this phenomenon also occurs in metazoans (see below).

Thus, some genes localize to the nuclear periphery when

active and localization promotes transcription.

Consistent with the physical association of genes with the

NPC, a number of NPC proteins, mRNA transport factors

or NPC-associated factors are required for peripheral

targeting of INO1, GAL1 [59,62,63��], GAL2 and

HSP104 [58]. This suggested that the change in localiz-

ation of these genes to the nuclear periphery might

represent a consequence of transcription, perhaps

through a bridging interaction of NPC-associated mRNA

transport factors with the gene [54,58]. Consistent with

this possibility, the interaction of some genes with the

NPC is RNase sensitive [54], the targeting of HXK1 to the

nuclear periphery requires the 30UTR [57] and the tar-

geting of GAL10 and HSP104 to the NPC requires the

mRNA transport receptor Mex67 [58]. However, exper-

iments with a temperature sensitive allele of RNA poly-

merase II showed that the interaction of GAL1 with the

NPC [64] and the targeting of INO1 to the nuclear

periphery [59] are independent of mRNA production.

Therefore, the localization of some genes at the nuclear

periphery is independent of transcription, suggesting that
www.sciencedirect.com
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Genes associated with the Nuclear Pore Complex at the nuclear periphery. (a) The mechanism of INO1 targeting to the NPC. In yeast, active genes

such as INO1 contain zip codes (Gene Recruitment Sequences, or GRSs) in their promoters that can localize at the nuclear periphery through

interaction with the NPC, perhaps through the interaction adaptor proteins (X). After repression, some genes like INO1 remain associated with the NPC

by a separate mechanism. Localization of recently repressed INO1 requires a different zip code (Memory Recruitment Sequence, or MRS), a different

interaction with the NPC (perhaps through adaptor proteins) and leads to promoter poising in association with unphosphorylated RNA polymerase II.

(b) The mechanism of GAL gene transcriptional memory. After repression, GAL genes remain looped, with the 50 and 30 ends of the gene associated.

This looping requires the Tpr homologue Mlp1 and, along with the SWI/SNF chromatin remodeler, promotes faster reactivation of the GAL genes

[74�,75�,76].
these genes might be targeted to the nuclear periphery in

a manner that is coupled to transcription, but not de-

pendent on transcription.

Consistent with this idea, genes possess cis-acting target-

ing elements that control localization. The targeting of
www.sciencedirect.com 
the GAL2 gene to the nuclear periphery requires the

promoter, but not the coding sequence or 30UTR [58].

The targeting of INO1 to the nuclear pore complex is

controlled by two cis-acting DNA sequences called Gene

Recruitment Sequences (GRS I and GRS II) in its pro-

moter (Figure 2) [63��]. These sequences are distinct
Current Opinion in Cell Biology 2011, 23:338–345
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from the Upstream Activating Sequences that control

INO1 transcription [65–67]. Importantly, these GRS

elements function as ‘DNA zip codes’; when integrated

at an ectopic locus, they are sufficient to confer both

peripheral localization and a physical interaction with the

NPC [63��]. Mutations in the GRS elements block per-

ipheral targeting of INO1 and another GRS-targeted

gene, TSA2, leading to a defect in transcription [63��].
This supports the idea that targeting to the NPC pro-

motes transcription. Genome-wide, GRS I-containing

promoters are enriched for genes that interact with the

NPC and that are induced by protein folding stress [63��].
Finally, the GRS I element, when introduced into the

genome of the highly divergent yeast Schizosaccharomyces
pombe, functions as a DNA zip code to confer peripheral

localization [63��]. This suggests that GRS I-mediated

targeting to the NPC is an ancient mechanism, having

been conserved for between 400 million and one billion

years.

Several complementary studies examining the interaction

of nucleoporins with the Drosophila melanogaster genome

suggest that genes interact with nuclear pore proteins in

flies [61,68,69��,70��]. Intriguingly, these studies ident-

ified at least two distinct types of genes: those that

interact with the NPC at the nuclear periphery and those

that interact with nucleoporins in the nucleoplasm. The

genes that interact with nucleoporins in the nucleoplasm

tended to be more active, developmentally important

genes, whereas the NPC-associated genes were less

active. Depletion of nucleoporins led to a defect in the

transcription of the genes in the nucleoplasm

[68,69��,70��]. This suggests that interactions with

nucleoporins can also occur away from the pore and that

interactions with nucleoporins in the nucleoplasm and at

the NPC may have different effects on transcription.

Even in yeast, there are multiple mechanisms by which

genes can be targeted to the NPC and these mechanisms

have distinct effects on transcription. Several genes that

localize at the nuclear periphery when they are active

remain at the nuclear periphery after they are repressed

(Figure 2) [59]. In fact, the INO1 and GAL1 genes remain

at the nuclear periphery in the population through several

cell divisions [59]. Thus, localization of these repressed

genes at the nuclear periphery represents an epigenetic

form of ‘transcriptional memory’. Localization at the

nuclear periphery correlates with a distinct mechanism

of activation, suggesting that the function of this form of

memory is to prime genes for reactivation [59,71]. In the

case of INO1, the mechanism by which the recently

repressed gene is localized at the nuclear periphery is

distinct from the mechanism by which the active gene is

localized at the nuclear periphery [72,73��]. Whereas

localization of active INO1 to the nuclear periphery

requires the GRS DNA zip codes, localization of recently

repressed INO1 to the nuclear periphery requires a DNA
Current Opinion in Cell Biology 2011, 23:338–345 
zip code called the Memory Recruitment Sequence

(MRS; Figure 2). In the context of the INO1 promoter,

the MRS only functions after INO1 has been repressed

and the two targeting mechanisms are independent

[73��]. The targeting mediated by these two elements

requires different NPC proteins, is regulated differently

through the cell cycle [72] and leads to distinct bio-

chemical interactions with the NPC [73��]. Whereas

GRS-mediated targeting of active INO1 to the NPC

promotes robust transcription, MRS-mediated targeting

of recently repressed INO1 to the NPC alters the chro-

matin state of the promoter and primes the gene for

reactivation [73��].

We do not understand how the interaction of genes with

the NPC or nucleoporins promotes transcription or alters

chromatin structure. In yeast, nucleoporins interact with

the promoters of genes like GAL1 and INO1 and this

interaction is important for transcription [63��,64]. It is

possible that, as with the Sir proteins, factors that

promote transcription are concentrated at the NPC

and targeting improves the efficiency of recruiting such

factors. Alternatively, perhaps the NPC provides a stable

surface on which three-dimensional events such as chro-

matin remodeling or gene looping are more efficient.

Although there is no evidence that gene looping requires

interaction with the NPC during transcription, the mem-

ory of recent GAL gene transcription  involves a stable

gene loop in association with the NPC (Figure 2b)

[74�,75�]. This interaction requires the Tpr homologue

Mlp1 [75�] and is distinct from the mechanism used by

the INO1 gene, requiring the SWI/SNF chromatin remo-

deling complex (Figure 2b) [76]. Because looping does

not persist as long as GAL gene transcriptional memory, it

remains to be seen if there are multiple mechanisms by

which memory is conferred [71]. Finally, because nucleo-

porins can promote transcription in the nucleoplasm, it is

also possible that these proteins have a novel, direct

function in transcription. If so, then perhaps these func-

tions could be carried out in association with the NPC in

some organisms and in the nucleoplasm in other organ-

isms.

Concluding remarks
The two phenomena highlighted in this brief review

represent the best-characterized changes in gene posi-

tioning associated with changes in gene expression.

Given the lack of true compartmentalization of the

nucleus, we propose that the spatial organization of the

nucleus is achieved by: 1) protein-protein interactions

that create spatial heterogeneities within the nucleus (e.g.

Sir protein foci that promote silencing of subtelomeric

genes or transcription factories that could promote tran-

scription of coregulated genes; Figure 1), 2) the folding of

chromosomes such that individual genes can access the

appropriate subnuclear compartments (e.g. Figure 1), 3)

the stabilization of both chromatin conformation and
www.sciencedirect.com
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subnuclear compartments through interaction with sur-

faces such as the nuclear envelope (e.g. the lamina or the

NPC), and 4) molecular mechanisms that allow regulated

movement of genes from one compartment to another.

The two phenomena discussed here illustrate these ideas.

If the nuclear lamina both concentrates repressive factors

and interacts with heterochromatin, it could create a

positive feedback mechanism to both package and

repress large parts of the genome (Figure 1). The NPC

and transcription factories may represent stable sites to

which co-regulated genes are targeted and achieve more

robust transcription through colocalization and concen-

tration of shared factors (Figures 1 and 2). Thus, sub-

nuclear compartments need not always be pre-existing

entities but might be produced through conditional inter-

actions among genes. A better understanding of the

molecular basis for localization to these sites, and how

localization impacts transcription, will allow us to answer

a number of fascinating questions. How do DNA

elements confer conditional localization to particular sub-

nuclear sites? Why is the expression of different genes

affected differently by localization to the same subnuc-

lear compartment? To what extent is localization really

important? In other words, are genes targeted to particular

places/factories within the nucleus and, if so, does this

matter for their proper expression? The answers to these

questions will provide important insights into how gen-

omes function within cells.
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